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Disclaimers 

Disclaimer for Database 

The data you have secured from the U.S. Geological Survey (USGS) National Produced Waters 

Geochemical Database v2.3 are provisional and  subject to revision. The data are released on the 

condition that neither the USGS nor the United States Government may be held liable for any damages 

resulting from their authorized or unauthorized use. 

Distribution Liability 

Although the data have been processed on computer systems at the USGS, U.S. Department of 

the Interior, no warranty, expressed or implied, is made by the U.S. Geological Survey regarding the 

utility of the data on any other system, nor shall the act of distribution constitute any such warranty. No 

responsibility is assumed by the USGS in the use of these data. 

Additional Limitations 

The information in the USGS National Produced Waters Geochemical Database v2.3 should be 

used with careful consideration of its limitations. The database is considered sufficiently accurate to 

provide an indication of tendencies in water composition from geographically and geologically defined 

areas. It is not appropriate for depiction of modern produced water compositions or examination of 

trends on small scales. The USGS makes no warranty regarding the accuracy or completeness of 

information presented in this database. Specific limitations of the database should be considered. Much 

of the information in the database cannot be independently verified. Methods of collection, sample 

preservation, analysis, assignment of geologic units and record keeping were not rigorous or 

standardized. Because of these uncertainties, users are advised to check data for inconsistencies, 
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outliers, and obviously flawed information. Methods of well construction, sample collection and 

chemical analysis have changed over time. Samples in the database may not be spatially representative 

and do not necessarily reflect the distribution and relative amount of water produced within a province 

and among geologic units. No sampling was planned to accurately depict the aggregate water 

composition of any area whether it be province, state, county or field. The geologic unit nomenclature 

developed for petroleum production may have changed over time. Water data collected 30 years ago 

from a province may not resemble water samples from current production. The composition of produced 

water within a province, field, or even well may change over time as a result of water flooding, 

recompletion in other intervals, and workovers. Water samples are commonly collected when a well has 

production problems or during the initial development of a well. Although criteria were applied to 

remove the obviously contaminated samples, the culling of unrepresentative data is considered 

incomplete. Most of the obvious redundant entries were removed from this database. Many of the 

remaining records represent multiple samples of the same well. Therefore aggregate statistics may be 

weighted by relatively few wells. 
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Version History 

v2.3 

Version 2.3 contains new input datasets, new organic analytes, corrections, and an updated more 

accurate duplicate search algorithm. New datasets include Appalachian Basin Marcellus Shale gas time-

series and organic data in PHANMARCELLUS, SHIHMARCELLUS, CHAPMAN, ROWANAKOB, 

and CLUFF; Permian Basin tight oil and Gulf Coast tight gas data in PERMIANENGLE and 

UTAUSTIN; Fayetteville Shale data in FAYETTEVILLE; and new geothermal data in 

NBMGGEOTHERMAL. Some input datasets were removed or replaced. SKEEN from v2.2 is a 

duplicate of APPALACHIAN data, and was therefore removed for v2.3. ROWANMARCELLUS from 

v2.2 was updated to ROWANAKOB in v2.3 to include organic data in a different publication using the 

same samples. All of the data labeled with a “Geothermal” WELLTYPE in v2.2 were removed and 

replaced with geothermal data from the NBMGGEOTHERMAL database. The data labeled with a 

“Geothermal” WELLTYPE in v2.2 were from shallow groundwaters, not geothermal wells. Though 

nine new input datasets have been added, the total number of records has decreased. This is largely 

related to the removal of samples improperly labeled “geothermal” in v2.2 and also a function of a more 

precise duplicate search algorithm.  

v2.2 

Version 2.2 contains new input datasets and changes to the creation and format of the compiled 

database. New datasets, including KHARAKA, BARNABY, SKEEN, CAPO, ROWANMARCELLUS, 

HOBBS, KNOWLES, SHOUAKARSTASH, PERMIAN, ILLINOISSTEUBER, and MAFLA fill 

regional gaps and contain more isotopic information. The three original USGS datasets USGSMAIN, 

USGSOK, and USGSARK have been combined into a single one named USGSBREIT. Location errors 
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were corrected and new well perforation depths were added from public sources for some data released 

in the previous version. Extraneous variables were removed and some variables were condensed into a 

single column. For example, all township and range information has been condensed into a single 

column TOWNRANGE. MGL and PPM have been condensed into UNITS. LAT, LATAPPROX, 

LONG, and LONGAPPROX have been condensed into LATITUDE and LONGITUDE, with a note in 

LATLONGAPX if the spatial data are approximate. All of the lithology columns were condensed into 

the single column LITHOLOGY. The database is now compiled using R (R Core Team, 2015) using a 

procedure described below. Variables with cleaned-up categorical data include WELLTYPE, STATE, 

USGSREGION, BASIN, ERA, and PERIOD. FORMATION names have been cleaned-up for only the 

Appalachian Basin. Duplicates are now found first within each input dataset and then tested between 

dataset using more stringent criteria. The new variable TDSUSGS is a reported or calculated value in 

mg/L for ease of plotting. The new variable SG is a reported or empirically determined specific gravity 

that allows the user to convert from ppm to mg/L.  

v2.1 

Version 2.1 corrects errors found in version 2.0 of the database. Incorrect LATITUDE, 

LONGITUDE, or STATE variables were updated based on API or other well information. Chemical 

and well data in incorrect columns were placed in the correct columns. Unit problems were fixed for 

chemistry and specific gravity data. Alkalinity data were put into the correct columns based on the 

method of measurement. Certain variables not given in the original input datasets, including 

WELLTYPE and reservoir age information were determined based on well and formation data. Various 

other errors noted by users were corrected by referring back to the original source of the data. No new 

datasets were added except IDDB = “WILLISTON,” which is a compilation of the EASTPOPLAR and 
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BAKKEN entries from version 2.0 of the database along with unpublished data (Thamke, 2014, written 

communication).   
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Introduction 

During hydrocarbon production, water is typically co-produced from the geologic formations 

producing oil and gas. Understanding the composition of these produced waters is important to help 

investigate the regional hydrogeology, the source of the water, the efficacy of water treatment and 

disposal plans, potential economic benefits of mineral commodities in the fluids, and the safety of 

potential sources of drinking or agricultural water. In addition to waters co-produced with hydrocarbons, 

geothermal development or exploration brings deep formation waters to the surface for possible 

sampling. This U.S. Geological Survey (USGS) Produced Waters Geochemical Database, which 

contains geochemical and other information for 114,943 produced water and other deep formation water 

samples of the United States, is a provisional, updated version of the 2002 USGS Produced Waters 

Database (Breit and others, 2002). In addition to the major element data presented in the original, the 

new database contains trace elements, isotopes, and time-series data, as well as nearly 100,000 

additional samples that provide greater spatial coverage from both conventional and unconventional 

reservoir types, including geothermal. The database is a compilation of 40 individual databases, 

publications, or reports. The database was created in a manner to facilitate addition of new data and 

correct any compilation errors, and is expected to be updated over time with new data as provided and 

needed. Table 1 shows the abbreviated ID of each input database (IDDB), the number of samples from 

each, and its reference. Table 2 defines the 190 variables contained in the database and their 

descriptions. The database variables are organized first with identification and location information, 

followed by well descriptions, dates, rock properties, physical properties of the water, and then 

chemistry. The chemistry is organized alphabetically by elemental symbol. Each element is followed by 

any associated compounds (e.g. H2S is found after S). After Zr, molecules containing carbon, organic 
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compounds and dissolved gases follow. Isotopic data are found at the end of the dataset, just before the 

culling parameters.  

Database Compilation Procedure 

Input Datasets 

Modification of the original data or variable names is necessary to create a database with 

consistent headers, compositional units, and numeric data that can be plotted or analyzed as a whole. 

One of the main goals of this updated database is to create a compiled dataset where every change to the 

original datasets is reversible and recorded. Thus if errors are found, there is a coded record that can be 

adjusted as needed, and the compiled dataset can be easily recreated from the original data files. To 

meet this goal, the USGS National Produced Waters Geochemical Database v2.3 is compiled using R, a 

language and environment for statistical computing and graphics (R Core Team, 2016)
1
. An R script is 

written for each input database that imports the original data, renames the variables to match the 

template (Table 2), and then appends the existing columns to a template header. Non-numeric characters 

within numeric variables (for example, ions and pH) are fixed, deleted, or replaced with the following 

codes: 

 <MDL = Less than the Method Detection Limit (e.g. N.D., non-detect, absent) 

 <PQL = Less than the Practical Quantification Limit (e.g. Trace, minor, present) 

 UNK = Transcription error or otherwise nonsensical entry (e.g. 10K41) 

 NA = Not analyzed, unknown (e.g. --, n.a., NA) 
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Censored data for which the MDL is known are left as is (e.g. <10 remains <10 rather than 

<MDL). Dates are formatted into a consistent date form and extra variables are removed. Units for all 

variables other than the major and minor ions are defined in Table 2. The major and minor ions are 

generally reported in units of milligrams per liter (mg/L) or on a mass basis as parts per million (ppm) 

or its equivalent, milligrams per kilogram (mg/kg). The units used are defined in the UNITS column. 

The user of this database must be careful to examine the units when using the data and can convert 

between the two using measurements or estimates of brine density. A calculated TDS variable 

(TDSUSGS) is described below and has already been converted to mg/L for easy plotting. This variable 

is different than TDSCALC, which is the reported value calculated by the author of an input dataset or 

report.  

Samples with duplicate American Petroleum Institute well identification (API) codes and 

chemical concentrations with large numbers of significant figures in common, were culled. It is unlikely 

that two samples, even from the same well, will have the exact same concentrations for three or more 

analytes, and therefore such similarities represent true duplicates. API code, calcium (Ca), chloride (Cl), 

and bicarbonate (HCO3) concentrations are used for a starting duplicate search. If these analytes were 

detected in samples that did not appear to be true duplicates, other analytes like Na and Mg were added 

to the search. Care was taken to avoid false duplicates (e.g. where all three of the initial ions had null 

data). 

Once non-numeric characters were replaced and duplicates were removed, categorical and text 

variables were cleaned up. Variables such as SOURCE, REFERENCE, WELLTYPE and STATE were 

defined. Lastly, the new dataset was saved as an intermediate file to be appended to the main database.  
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Compiled Dataset 

Each individual input database is appended to the template using a global R script. The database 

is further standardized here with:  

1. Internally consistent 14-digit API (API) 

2. One of eight regions (USGSREGION) defined by the U.S. Geological Survey National Oil and 

Gas Resource Assessment Team (1995) 

3. Basins simplified to 85 different reported names (BASIN) 

4. State names (STATE) 

5. One of eight well type (WELLTYPE) designations (Conventional Hydrocarbon, Shale Gas, 

Tight Oil, Tight Gas, Coal Bed Methane, Geothermal, and Groundwater) 

6. Geologic Era (ERA) 

7. Geologic Period (PERIOD)  

8. Formations (FORMATION) have been standardized only for data in the Appalachian Basin.  

Duplicates are again removed between input datasets using similar criteria as described above. The 

duplicate observation retained was generally the one in the database that contained more information. 

Calculated Variables 

The column SG provides an option for conversion from ppm to mg/L. SG is either the reported 

specific gravity, or an estimate based on a relationship between the reported specific gravity and the 

total dissolved solids (TDS) measured in ppm for the entire database. For example, if calcium (Ca) 

concentrations are in ppm, it simply can be multiplied by SG to obtain Ca concentration in mg/L. This 

has already been done for the new column TDSUSGS. The intent of the TDSUSGS column is to 
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provide the user with an easy way to plot the most common variable with consistent units. TDSUSGS 

shows the TDS concentration, in mg/L, in the following order of primacy:  

1. the reported measured TDS 

2. the reported calculated TDS 

3. the sum of all major cations and anions assuming both Na and Cl data exist. TDS concentrations 

in ppm were converted to mg/L by multiplying by SG.  

Culling Data Based on Chemistry 

Quality control of the dataset can be performed by culling based on geochemical criteria. In this 

version 2.3 of the database, the data that fall outside of the bounds of the following criteria are flagged, 

rather than culled. There are six temporary columns in the database that indicate the failure to meet 

specific culling criteria, based on those published in Hitchon and Brulotte (1994). An “X” is placed in 

the columns shown in Table 2 where the sample falls outside of the pH range of 4.5 – 10.5; where Mg > 

Ca, K > Cl, or K > 5 x Na; and where the charge balance error is greater than 15%.  

The data were kept to allow the user to make judgment calls on their quality. 

Files Available for Download 

The database is available in three different file formats: a comma separated values (.csv) text 

file, a Microsoft Excel spreadsheet (.xlsx) and an .Rdata file for R users. There are two versions for each 

of these, one with a “c” suffix and one with an “n” suffix. The “c” files retain all text codes within the 

numeric variables that describe the data (e.g.  “<0.01”, “<MDL”,  “<PQL”, or “UNK”). The “n” files 

remove all non-numeric codes from the numeric variables for easy plotting. The following six files are 

available for download on the USGS Produced Waters website: 
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 USGS_Produced_Waters_v2.3c.csv 

 USGS_Produced_Waters_v2.3c.xlsx 

 USGS_Produced_Waters_v2.3c.Rdata 

 USGS_Produced_Waters_v2.3n.csv 

 USGS_Produced_Waters_v2.3n.xlsx 

 USGS_Produced_Waters_v2.3n.Rdata 
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Tables 

Table 1. Input databases and datasets 

[Short names of input databases, number of samples after removal of duplicates, and references on input databases. Please 

cite original references in future publications where there are known.] 

ID of Database Samples Reference 

ANTRIM 53 Walter and others (1997) 

APPALACHIAN 1,431 Multiple – see references 

ARKMOLDOVANYI 88 Moldovanyi and Walter (1992) 

BARNABY 72 Barnaby and others (2004) 

CAPO 58 Capo and others (2014) 

CBM 3,216 Dahm (2013, writen communication) 

CHAPMAN 41 Chapman et al. (2012) 

CIMAREX 2,888 Cimarex Energy Company (2013, written communication) 

CLUFF 19 Cluff et al., (2014) 

FAYETTEVILLE 6 Warner et al. (2013) 

FERRON 41 Rice (2003) 

HOBBS 201 Hobbs and others (2011) 

ILLINOIS 747 Meents and others (1952) 

ILLINOISSTEUBER 90 Steuber and others (1987); Steuber and Walter (1991) 

INDIANA 449 Keller (1983) 

KHARAKA 312 Multiple – see references 

KNOWLES 101 Powell and others (1963) 

MAFLA 1536 Pashin (2013, written communication) 

MICHIGAN 393 Vugrinovich (2013, written communication) 

MISSISSIPPI 81 Carpenter and others (1974) 

MONTANACBM 20 Meredith and others (2010) 

NATCARB 10,893 Dept. of Energy, National Energy Technology Laboratory (2013) 

NBMGGEOTHERMAL 689 Nevada Bureau of Mines and Geology (2016) 

NORTHDAKOTA 7,330 North Dakota Oil and Gas Division (2013) 

OHBRINE 561 McDonald and others (2013, written communication) 

PALODURO 16 Bassett and others (1983) 

PARADOX 91 Hanshaw and Hill (1969) 

PASHIN 126 Alabama Geological Survey (2013, written communication) 

PERMIAN 32 Steuber and others (1998) 
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PERMIANENGLE 39 Engle and others (2016) 

PHANMARCELLUS 62 Phan and others (2016) 

POWDERRIVERCBM 47 Rice and others (2000) 

ROCKIES 3,259 Dept. of Energy, National Energy Technology Laboratory (2005) 

ROWANAKOB 61 Rowan and others (2015); Akob and others (2015) 

SHIHMARCELLUS 114 Shih and others (2015) 

SHOUAKARSTASH 126 Shouakar-Stash (2008) 

USGSBREIT 69,886 Breit and Otton (2002) 

UTAUSTIN 505 Multiple – See references 

WILLISTON 50 Peterman and Thamke, 2016; USGS OFRs 2010-1326 & 2012-1149 

WYOGCC 9,213 Wyoming Oil and Gas Conservation Commission (2013) 

Total 114,881  
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Table 2. Variable names and descriptions 

Variable Name Description Samples Percent 

IDUSGS Unique ID in this database 114,943 100% 

IDORIG ID in original database or publication 114,943 100% 

IDDB ID (name) of input database 114,943 100% 

SOURCE Source of data 75,708 66% 

REFERENCE Publication 7,008 6.1% 

LATITUDE Latitude 103,872 90% 

LONGITUDE Longitude 104,179 91% 

LATLONGAPX Description if LATITUDE or LONGITUDE are approximate 22,611 20% 

API API well number, 14 digits 74,052 64% 

USGSREGION USGS Region 114,943 100% 

BASIN Basin 114,943 100% 

BASINCODE Basin Code 69,598 61% 

STATE State 114,943 100% 

STATECODE State Code 114,721 100% 

COUNTY County 83,841 73% 

COUNTYCODE County Code 82,085 71% 

FIELD Field 96,483 84% 

FIELDCODE Field Code 56,893 49% 

WELLNAME Well name 100,106 87% 

WELLCODE Well Code 16,006 14% 

WELLTYPE Well type 114,943 100% 

TOWNRANGE Township, Range, Section, Quarter 23,073 20% 

REGDIST Regional District 19,203 17% 

LOC Location 4,204 3.7% 

QUAD Quad 109 0.1% 

TIMESERIES Order of time-series data 202 0.2% 

DAY Sample day of time-series data 2,903 2.5% 

DATECOMP Date of well completion 6,415 5.6% 

DATESAMPLE Date of sample collection 85,555 74% 

DATEANALYS Date of analysis 10,146 8.8% 

METHOD Sample Method 67,502 59% 

OPERATOR Well operator 31,258 27% 

PERMIT Well permit holder 8,355 7.3% 

DFORM Geologic formation name of greatest depth 23,838 21% 
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GROUP Geologic group name 88 0.1% 

FORMATION Geologic formation name 114,943 100% 

MEMBER Geologic member name 2,433 2.1% 

AGECODE Geologic Age code 55,612 48% 

ERA Geologic Era name 114,943 100% 

PERIOD Geologic Period name 114,943 100% 

EPOCH Geologic Epoch name 23,101 20% 

DEPTHUPPER Upper perforation depth, ft. Depth added here if non-specific. 81,836 71% 

DEPTHLOWER Lower perforation depth, ft 68,017 59% 

DEPTHWELL Reported Total depth of well, ft 42,979 37% 

ELEVATION Elevation of well, ft 21,227 18% 

LAB Laboratory that analyzed the results 12,537 11% 

REMARKS Remarks or comments 7,649 6.7% 

LITHOLOGY Lithology 28,937 25% 

POROSITY Porosity, % reported 26 0.0% 

TEMP Temperature, deg F reported 3,294 2.9% 

PRESSURE Pressure, psi reported 978 0.9% 

SG Specific Gravity, reported or calculated (see text) 79,522 69% 

SPGRAV Specific Gravity, reported 62,461 54% 

SPGRAVT Temperature of Specific Gravity measurement, deg F 30,712 27% 

RESIS Resistivity, Ohm m 65,440 57% 

RESIST Temperature of Resistivity measurement, deg F 57,811 50% 

PH pH 86,630 75% 

PHT Temperature of pH measurement, deg F 1,545 1.3% 

EHORP Eh / Oxidation Reduction Potential, mV 55 0.0% 

COND Conductivity, μS/cm 1,093 1.0% 

CONDT Temperature of Conductivity measurement, deg F 242 0.2% 

TURBIDITY Turbidity 97 0.1% 

HEM Oil and Grease 194 0.2% 

MBAS Surfactants and Detergents 141 0.1% 

UNITS mg/L or ppm, applies to all chemistry unless specified 114,943 100% 

TDSUSGS Total Dissolved Solids, calculated (see text) 109,928 96% 

TDS Total Dissolved Solids, measured 98,166 85% 

TDSCALC Total Dissolved Solids, calculated, as reported in reference 2,176 1.9% 

TSS Total Suspended Solids 1,497 1.3% 

CHARGEBAL Charge balance of major ions, %, reported 3,781 3.3% 
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chargebalance Charge balance of major ions, %, calculated 109,217 95% 

Ag Silver 115 0.1% 

Al Aluminum 680 0.6% 

As Arsenic 493 0.4% 

Au Gold 1 0.0% 

B Boron 4,618 4.0% 

BO3 Borate 241 0.2% 

Ba Barium 12,498 11% 

Be Beryllium 127 0.1% 

Bi Bismuth 25 0.0% 

Br Bromide 6,548 5.7% 

CO3 Carbonate 10,740 9.3% 

HCO3 Bicarbonate 98,708 86% 

Ca Calcium 107,478 94% 

Cd Cadmium 188 0.2% 

Cl Chloride 108,646 95% 

Co Cobalt 186 0.2% 

Cr Chromium 2,419 2.1% 

Cs Cesium 456 0.4% 

Cu Copper 1,208 1.1% 

F Fluoride 1,127 1.0% 

FeTot Iron, total 27,567 24% 

FeIII Iron, 3+ 559 0.5% 

FeII Iron, 2+ 652 0.6% 

FeS Iron sulfide 2 0.0% 

FeAl Iron plus Aluminum, reported as elements 195 0.2% 

FeAl2O3 Iron plus Aluminum, reported as oxides 441 0.4% 

Hg Mercury 180 0.2% 

I Iodine 3,659 3.2% 

K Potassium 31,550 27% 

KNa Potassium plus Sodium 8,609 7.5% 

Li Lithium 6,126 5.3% 

Mg Magnesium 103,240 90% 

Mn Mangansese 3,759 3.3% 

Mo Molybdenum 184 0.2% 

N Nitrogen, total 242 0.2% 
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NO2 Nitrite 94 0.1% 

NO3 Nitrate 3,796 3.3% 

NO3NO2 Nitrate plus Nitrite 103 0.1% 

NH4 Ammonium 1,521 1.3% 

TKN Kjeldahl Nitrogen 134 0.1% 

Na Sodium 96,432 84% 

Ni Nickel 305 0.3% 

OH Hydroxide 398 0.3% 

P Phosphorus 39 0.0% 

PO4 Phosphate 321 0.3% 

Pb Lead 359 0.3% 

Rh Rhodium 1 0.0% 

Rb Rubidium 767 0.7% 

S Sulfide 258 0.2% 

SO3 Sulfite 105 0.1% 

SO4 Sulfate 93,104 81% 

HS Bisulfide 20 0.0% 

Sb Antimony 143 0.1% 

Sc Scandium 43 0.0% 

Se Selenium 287 0.3% 

Si Silica 3,708 3.2% 

Sn Tin 101 0.1% 

Sr Strontium 7,812 6.8% 

Ti Titanium 103 0.1% 

Tl Thallium 100 0.1% 

U Uranium 21 0.0% 

V Vanadium 40 0.0% 

W Tungsten 3 0.0% 

Zn Zinc 1,186 1.0% 

ALKHCO3 Alkalinity as HCO3 1,691 1.5% 

ACIDITY Acidity as CaCO3 102 0.1% 

DIC Dissolved Inorganic Carbon 200 0.2% 

DOC Dissolved Organic Carbon 307 0.3% 

TOC Total Organic Carbon 432 0.4% 

CN Cyanide 112 0.1% 

BOD Biochemical Oxygen Demand 114 0.1% 
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COD Chemical Oxygen Demand 115 0.1% 

BENZENE Benzene 928 0.8% 

TOLUENE Toluene 898 0.8% 

ETHYLBENZ Ethybenzene 7 0.0% 

XYLENE Xylene 42 0.0% 

ACETATE Acetate 1,145 1.0% 

BUTYRATE Butyrate 11 0.0% 

FORMATE Formate 12 0.0% 

LACTATE Lactate 12 0.0% 

PHENOLS Phenols 108 0.1% 

PERC Tetrachloroethylene 1 0.0% 

PROPIONATE Propionate 15 0.0% 

PYRUVATE Pyruvate 8 0.0% 

VALERATE Valerate 8 0.0% 

ORGACIDS Total Organic Acids 16 0.0% 

Ar Argon gas 17 0.0% 

CH4 Methane gas 17 0.0% 

C2H6 Ethane gas 8 0.0% 

CO2 Carbon Dioxide gas 1,219 1.1% 

H2 Hydrogen gas 13 0.0% 

H2S Hydrogen Sulfide gas 3,471 3.0% 

He Helium gas 13 0.0% 

N2 Nitrogen gas 18 0.0% 

NH3 Ammonia gas 344 0.3% 

O2 Oxygen gas 33 0.0% 

ALPHA Alpha particles, pCi/L 136 0.1% 

BETA Beta particles, pCi/L 141 0.1% 

dD δH, per mil 1,039 0.9% 

H3 Tritium, 
3
H, tritium units 26 0.0% 

d7Li δ
7
Li, per mil 68 0.1% 

d11B δ
11

B, per mil 166 0.1% 

d13C δ
13

C, per mil 145 0.1% 

C14 
14

C, pCi/L 3 0.0% 

d18O δ
18

O, per mil 1,335 1.2% 

d34S δ
34

S, per mil 16 0.0% 

d37Cl δ
37

Cl, per mil 259 0.2% 
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K40 
40

K, pCi/L 50 0.0% 

d81Br δ
81

Br 94 0.1% 

Sr87Sr86 
87

Sr/
86

Sr 1040 0.9% 

I129 
129

I/I, parts per quadrillion 12 0.0% 

Rn222 
222

Rn, pCi/L 134 0.1% 

Ra226 
226

Ra, pCi/L 720 0.6% 

Ra228 
228

Ra, pCi/L 184 0.2% 

cull_PH “X” if pH < 4.5 or pH > 10.5
 

1,846 1.6% 

cull_MgCa “X” if Mg > Ca
 

4,136 3.6% 

cull_KCl “X” if K > Cl
 

280 0.2% 

cull_K5Na “X” if K > 5xNa
 

53 0.1% 

cull_chargeb “X” if charge balance > 15%
 

24,188 21% 



 

 


