# GEOLOGICAL SURVEY OF ALABAMA

Philip E. LaMoreaux State Geologist

# **ENERGY RESOURCES RESEARCH DIVISION**

William E. Tucker Division Chief

# **BULLETIN 88**

# A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

By Donald B. Moore and Thomas J. Joiner

UNIVERSITY, ALABAMA

1969

#### STATE OF ALABAMA

Honorable Albert P. Brewer, Governor

#### **GEOLOGICAL SURVEY OF ALABAMA** AND STATE OIL AND GAS BOARD

Philip E. LaMoreaux State Geologist and Oil and Gas Supervisor Assistant State Geologist and Assistant Oil and Gas Supervisor For Technical Operations - Thomas J. Joiner For Administration - George W. Swindel, Jr.

> William T. Watson, Legal Advisor Katherine L. Fraker, Secretary

#### OIL AND GAS BOARD OF ALABAMA

E. K. Hanby, Chairman C. D. Glaze, Member E. O. Eddins, Member Philip E. LaMoreaux, Secretary

#### ADMINISTRATION

- ADMINISTRATION V. Q. Shanner, Accountant C. Booth, Secretary G. A. Clements, Scientific Aide A. S. Howmer, Librarian D. L. Brady, Librarian J. S. Toison, Geologist D. E. Raymond, Geologist D. E. Raymond, Geologist T. V. Stone, Photographic Specialist W. H. Barkew, Duplicating Supervisor A. W. Green, Secretary M. J. Dean, Receptionist R. W. Thomas, Scientific Aide S. L. Coleman, Scientific Aide F. L. Frazier, Eng. Design Asst. M. Green, Trainee J. E. McCloud, Custodian D. L. Matthews, Custodian J. H. McCloud, Custodian H. C. McDonald, Trainee J. C. Price, Laborer

#### WATER RESOURCES

L. W. Hyde, Chief Geologist B. L. Bailey, Geologist

C. F. Haine, Hydrologist J. R. Avrett, Hydrologist K. E. Vanlier, Hydrologist R. J. Faust, Hydrologist J. G. Newton, Hydrologist J. G. Newton, Hydrologist J. G. Newton, Hydrologist J. C. Scott, Hydrologist J. D. Toulmin, Jr., Geologist A. L. Knight, Hydr. Eng. J. F. McCain, Hydr. Eng. G. O. Ming, Hydrologist S. C. Moore, Hydr. Eng. J. R. Willmon, Hydr. Eng.

- J. S. Ellard, Geologist R. V. Chandler, Geologist P. C. Reed, Geologist V. M. Shamburger, Jr., Geologist R. M. Alverson, Hydraulic Engineer S. L., Graves, Hydraulic Engineer A. M. Malatino, Chemist J. M. Leahterwood, Secretary

#### OIL AND GAS CONSERVATION

- DL AND GAS CONSERVATION H. G. White, Chief Petroleum Engineer J. D. Turmer, Geologist R. C. Wood, Field Agent T. L. Sloy, Field Agent M. J. Smith, Secretary A. K. Collins, Secretary

#### **ENERGY RESOURCES RESEARCH -**GEOPHYSICS

- W. E. Tucker, Chief Engineer D. B. Moore, Geologist R. E. Kild, Geologist W. L. Sembrough, Geophysiciet G. V. Wilson, Geophysiciet R. C. MucElvain, Petroleum Specialist I. M. Muffah, Petroleum Engineer

#### **COOPERATIVE STUDIES WITH U.S. GEOLOGICAL SURVEY** WATER RESOURCES DIVISION

#### William L. Broadhurst, District Chief

#### William J. Powell, Associate District Chief

- E. R. German, Chemint
  G. C. Linces, Hydrologint
  J. R. Fernandes, Civil Eng.
  E. O. Copeland, Jr., Civil Eng.
  R. H. Cobb, Hydr. Eng. Tech.
  P. W. Cole, Hydr. Eng. Tech.
  F. D. King, Hydr. Eng. Tech.
  G. Ling, Hydr. Eng. Tech.
  G. Ling, Jr., Hydr. Eng. Tech.
  G. Ming, Hydr. Hydr. Eng. Tech.
  G. Ming, Hydr. Hydr. Eng. Tech.
  G. Ming, Hydr. Hydr. Eng. Tech.
  Y. L. Weich, Hydr. Eng. Tech.
  Y. L. Weich, Hydr. Eng. Tech.
  J. A. Giles, Phys. Sci. Tech.

- W. F. Harris, Jr., Phys. Sci. Tech.
  D. D. Batemon, Eng. Aid
  R. S. McHenry, Hydr. Eng. Aid
  B. G. Byrd, Eng. Aid
  J. A. Doniel, Cart. Tech.
  C. Watkins, Hydr. Field Asst.
  C. T. Ailen, Jr., Eng. Aid
  J. T. Aleen, Hydr. Eng. Aid
  N. A. DeWilt, Cart. Aid
  A. J. Roberts, Adm. Asst.
  B. L. McCraw, Editorial Clk.
  S. B. Simpson, Clerk-Sleno,
  M. R. Powell, Clerk-DMT

#### COOPERATIVE RESEARCH ACTIVITIES WITH UNIVERSITIES AND COLLEGES

University of Alabama Arizona State University Birmingham Southern College Floride State University University of Hunois University of Illinois University of Chattanooga Northeast Lewinies State Co Northeast Louisiana State College

Yale University University of Iowa Louisiana State University Louisland State University Memphis State University University of North Carolina Auburn University Michigan State University Wisconsin State University

#### **COOPERATIVE STUDIES WITH OTHER AGENCIES**

U.S. Bureau of Mines U.S. Bureau of Mines Office of Water Resources Research Alabama Water Resources Research Alabama Stater Planning und Industrial Development Board Alabama State Highway Department Alabama Department of Conservation Alabama Program Development Office

- PALEONTOLOGY-STRATIGRAPHY C. W. Copeland, Jr., Chief Geologist J. A. Drahovzal, Geologist J. T. Kidd, Scientific Aide J. K. Smith, Scientific Technician R. M. Willmon, Secretary E. M. Crowell, Laboratory Aide

PALEONTOLOGY-STRATIGRAPHY

J. C. Beasley, Scientific Aide R. L. Barnett, Scientific Aide P. A. Christian, Secretary

#### ECONOMIC GEOLOGY

- W. E. Smith, Chief Geologist O. M. Clarke, Jr., Geologist T. W. Daniel, Jr., Geologist T. L. Neathery, Geologist P. H. Mozer, Geologist M. W. Szabo, Geologist H. S. Chaffin, Jr., Geologist M. W. Elliott, Secretary

# SPECIAL CONSULTANTS D. B. Knowles, Senior Hydrologist T. A. Simpson, Geologist-Planning E. O. Brown, Science Writer W. B. Jones, State Geologist Emeritus W. McGlamery, Paleontologist Emeritus

University, Alabama August 13, 1969

Honorable Albert P. Brewer Governor of Alabama Montgomery, Alabama

Dear Governor Brewer:

I have the honor to transmit herewith the report entitled "A Subsurface Study of Southeast Alabama," by Donald B. Moore and Thomas J. Joiner, which has been published as Bulletin 88 of the Geological Survey of Alabama.

This report deals with the stratigraphy and structural configuration of the subsurface formations in southeast Alabama and defines areas having excellent potential for the production of oil and gas. This is an outstanding research effort and has contributed substantially to the added emphasis on oil and gas exploration in southern Alabama during the past year. This report is a joint effort on the part of the Oil and Gas Board and Geological Survey to encourage exploration and development of Alabama's natural resources.

Respectfully,

Philip E. LaMoreaux State Geologist

## CONTENTS

|                                                | Page        |
|------------------------------------------------|-------------|
| Abstract                                       | 1           |
| Introduction                                   | 1           |
| Previous work                                  | 3           |
| Geology                                        | 3<br>3<br>3 |
| Basement                                       | 3           |
| Triassic System                                | 3           |
| Jurassic System                                | 4           |
| Louann Salt                                    | 4           |
| Norphlet Formation                             | 4           |
| Smackover Formation                            | 4           |
| Haynesville Formation                          | 5           |
| Cotton Valley Group                            | 5           |
| Cretaceous System                              | 5           |
| Lower Cretaceous Series                        | 5           |
| Upper Cretaceous Series                        | 6           |
| Tuscaloosa Group                               | 6           |
| Eutaw Formation                                | 8           |
| Selma Group                                    | 8           |
| Tertiary System                                | 10          |
| Structure                                      | 11          |
| Lower Tuscaloosa horizon                       | 12          |
| Base of Selma Group marker                     | 14          |
| Top of Selma Group                             | 14          |
| Lower Tuscaloosa • base of Selma Group isopach | 15          |
| Base of Selma Group to top of Selma Group      | 15          |
| Cross sections                                 | 15          |
| Summary                                        | 19          |
| Selected references                            | 20          |

## **ILLUSTRATIONS**

## (All plates in pocket)

Plate 1. Structure maps of southeast Alabama.

- 2. Cross section A-A'.
- 3. Cross section A'-A".
- 4. Cross section B-B'.
- 5. Cross section C-C'.
- 6. Cross section C'-C".
- 7. Cross section D-D'.

8. Generalized subsurface facies changes in southeast Alabama.

CONTENTS

|                                                       | Page |
|-------------------------------------------------------|------|
| Figure 1. Index map showing area of investigation     | 2    |
| 2. Diagrammatic dip section of the Selma and          |      |
| Tuscaloosa Groups in eastern part of northern         |      |
| Gulf coastal province                                 | 7    |
| 3. Map showing structure, top of the Lower Tuscaloosa |      |
| horizon, Pollard oil field                            | 13   |

# TABLES

| Table 1. Elevation of the top of the Lower Tuscaloosa | 24 |
|-------------------------------------------------------|----|
| 2. Elevation of the base of the Selma Group           | 26 |
| 3. Elevation of the top of the Selma Group            | 28 |
| 4. Thickness of the interval between the base of the  |    |
| Selma Group and the top of the Lower Tuscaloosa       | 30 |
| 5. Thickness of the Selma Group                       | 32 |

## A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

#### By Donald B. Moore and Thomas J. Joiner

#### ABSTRACT

A subsurface study of Barbour, Bullock, Butler, Coffee, Conecuh, Covington, Crenshaw, Dale, Escambia, Geneva, Henry, Houston, and Pike Counties was made to evaluate the water, mineral, and petroleum resources. The study was based on available data from oil-test wells, core holes and water wells.

The easternmost limit of the salt basin in Alabama extends through Escambia County. Most of the geologic structures detected in the Lower Cretaceous Series or in younger sediments in the salt basin are the result of movement of the underlying Louann Salt of Jurassic age. East of the salt basin the influence of basement tectonics is of primary importance in evaluating structure.

Subtle structural indications and numerous facies changes which occur in the 13-county area offer possibilities as potential oil traps.

The Pollard oil field proves the existence of source and reservoir beds in Escambia County, and Covington and Conecuh Counties have good oil and gas potential. Test wells which have been drilled in other parts of the study area offer little encouragement for petroleum possibilities, but most of the area remains virtually untested, and future exploration will probably discover other commercial oil accumulations in south and southeast Alabama.

## **INTRODUCTION**

A subsurface study of geology and structure was made in 13 counties in south and southeast Alabama to evaluate the water, mineral, and petroleum resources. The area studied included Barbour, Bullock, Butler, Coffee, Conecuh, Covington, Crenshaw, Dale, Escambia, Geneva, Henry, Houston, and Pike Counties (fig. 1).

Southeast Alabama lies within the Gulf Coastal Plain physiographic province where sediments consist of relatively unconsolidated sand, shale, clay, and limestone. The Coastal Plain sediments range in thickness from zero where they pinch out at the Fall Line, to an estimated 20,000 feet in southwest Escambia County.

The basic data used were from 230 oil test wells, 12 core holes, and numerous water wells that have been drilled. One hundred and thirty-six oil test wells were drilled in Escambia County with samples and electric logs available for study. Ninety-four oil

#### A SUBSURFACE STUDY OF SOUTHEAST ALABAMA



Figure 1.-Index map showing area of investigation.

test wells were drilled in the other 12 counties studied, but electric logs were available on only 52 of them. Electric logs of water wells were the main source of information in the northeast part of the area where Upper Cretaceous sediments are relatively shallow.

#### **PREVIOUS WORK**

Surface work which dealt with the stratigraphy, structure, and correlation of Upper Cretaceous rocks in parts of southeast Alabama was published by E. R. Applin (1947). Reconnaissance surface geologic mapping in the area was done by F. Sterns MacNeil (1946) and D. H. Eargle (1950).

Surface geologic mapping and a water and minerals resources investigation of the 13-county area was undertaken as a cooperative project of the Alabama Geological Survey and the U.S. Geological Survey in 1963. A geologic map of Barbour and Coffee Counties is now available. Geologic maps for the other counties are being prepared. Mineral resources maps of the 13 counties are also available.

### GEOLOGY

#### BASEMENT

Basement rocks of metamorphic and igneous composition were penetrated by 15 wells drilled in the project area. Depth to basement in these wells ranges from 1,700 feet below the surface in Bullock County to 9,470 feet in Butler County.

In Houston County well 186, Union Producing Co. E. P. Kirkland No. 1, bottomed in calcareous sandstone and shale of Ordovician age at a depth of 8,100 feet.

#### TRIASSIC SYSTEM

Rocks of Triassic(?) age have been reported from six oil test wells in southeastern Alabama (Applin, 1951; McKee and others, 1959; and King, 1961). The wells are: 145 (Nelson Exploration Company No. 1, Smith Lumber Company, Crenshaw County); B-321 (W. B. Hinton No. 1, J. S. Creel, Barbour County); B-317 (H. A. Stebbinger No. 1, Alice S. Robertson, Barbour County); 162 (Messergill and Williams No. 1, T. R. Grubbs, Barbour County); 159 (Robert York Trustee No. 1, S. V. Dismuke, Barbour County); and 631 (Renwar Oil Corporation No. 1, H. D. Granberry, Henry County).

Cores and cuttings from the wells show that buried Triassic(?) sedimentary rocks are composed of hard dark-red and greenish-gray and mottled micaceous shales irregularly interbedded with fine- to coarse-grained poorly sorted white, gray, and red sandstone that in places is conglomeratic and highly arkosic (Applin, 1957, p. 1486). Diabase dikes or sills were penetrated in wells B-321 and B-317.

#### JURASSIC SYSTEM

#### LOUANN SALT

The Louann Salt was encountered in six wells in southwest Alabama. This formation probably underlies the southwestern part of the area studied. The salt is clear to grayish white with anhydrite streaks.

Most of the major geologic structures in southwest Alabama are the results of deep-seated movement of the Louann Salt. The Pollard fault zone and other structures in Escambia County are probably related to salt movement. The updip limit of the Louann Salt is generally defined by a graben fault system such as the Gilbertown fault system in Choctaw County, and the Pollard fault zone in Escambia County (fig. 1).

#### NORPHLET FORMATION

The Norphlet Formation overlies the Louann Salt. It is composed of red and gray clays and sands, and some gravel. Frosted sand grains were noted in numerous samples. Maximum thickness of the Norphlet Formation is greater than 75 feet.

#### SMACKOVER FORMATION

The Smackover Formation is generally a light olive gray to brown fine-grained oolitic limestone with occasional vugular porosity. A sandstone unit in some wells in Clarke, Choctaw, and Wilcox Counties has been called Smackover equivalent by some workers, but the unit may be the Norphlet Formation. Additional work is needed to resolve the problem. The thickness of the Smackover Formation in Choctaw County is approximately 450 feet. GEOLOGY

The Smackover Formation probably underlies Escambia County. It has been the target of much recent drilling and is a prolific producer of high grade crude oil in Choctaw County, Alabama, and in Mississippi, Louisiana, Arkansas, and Texas.

#### **HAYNESVILLE FORMATION**

The Haynesville Formation that overlies the Smackover Formation is a regressive deposit with evaporites overlain by clastics. The upper part of the formation consists of fine-grained pink and red sands and silts with some pink to red shales. The lower evaporitic sequence consists of anhydrite, salt, shale, and limestone. The evaporites do not extend east of Escambia County.

#### **COTTON VALLEY GROUP**

The Cotton Valley Group, named by the Shreveport Geological Society, includes dark-gray marine fossiliferous shale, limestone, and sandstone. At the type locality in the Cotton Valley field in northern Louisiana, it is underlain by the Haynesville Formation and overlain by red beds of the Lower Cretaceous Hosston Formation.

In Alabama, the Cotton Valley Group consists of pink and gray sands and gravel; red, purple, and green mottled shale; green waxy shale; and some carbonaceous material.

The vertical limits of this formation in Alabama are difficult to determine lithologically or electrically.

The Cotton Valley Group, consisting of dark-red and green waxy shale, coarse-grained sand and sandstone, with conglomerate fragments, was penetrated at 10,470 feet in well 40, Humble Oil and Refining Co., Mrs. Minnie E. Skinner No. 1, T. 3 N., R. 10 E., in Escambia County. There have not been enough deep wells drilled in southeast Alabama to determine the extent of the area underlain by the Cotton Valley Group.

#### CRETACEOUS SYSTEM

# LOWER CRETACEOUS SERIES

Lower Cretaceous sediments were penetrated by 33 percent of the wells drilled in the project area. They underlie the "massive sands" of the Tuscaloosa Group of Upper Cretaceous age. Pink nodular lime and red and green shales generally occur at the top of the Lower Cretaceous throughout south Alabama. It is often difficult to determine the top of the Lower Cretaceous on electric logs, and regional correlations are dependent on sample logs. There have been few attempts to subdivide the Lower Cretaceous in southeast Alabama where the sequence is referred to as Lower Cretaceous undifferentiated. These sediments thin northward until they pinch out in the subsurface south of the Fall Line.

### UPPER CRETACEOUS SERIES

## TUSCALOOSA GROUP

The Tuscaloosa Group was originally ranked as the Tuscaloosa Formation, named for the city of Tuscaloosa in Tuscaloosa County, Alabama (Smith and Johnson, 1887). The formation was later divided into the Cottondale, Eoline, Coker, and Gordo Formations and raised to group status (Conant and others, 1945). In 1953, Drennen reclassified the outcropping Tuscaloosa Group in Alabama. The Coker Formation was redefined to include the Cottondale, Eoline, and Coker Formations of Conant, Eargle, and Monroe. The redefined formation is composed of a lower member, the Eoline, which includes beds formerly called Cottondale, and an upper unnamed member equivalent to the original Coker Formation. The Gordo Formation remains as originally defined. Thickness of the Tuscaloosa Group ranges from about 600 feet in the easternmost counties in southeast Alabama to more than 1,100 feet in Escambia County.

The Tuscaloosa Group undifferentiated consists typically of a lower arenaceous section, a middle argillaceous section that is normally marine, and an upper section of predominantly arenaceous to graveliferous beds. For the purposes of this report these sequences of sediment are termed "Lower," "Middle" (or Marine), and "Upper Tuscaloosa." Facies changes within the Tuscaloosa Group down dip from the surface exposures and the resulting changes in electrical characteristics hinder precise correlations of the subsurface units with the surface Coker and Gordo Formations. Murray (1961, p. 337) presents a possible correlation of the informal subsurface units with the formally named surface stratigraphic units (fig. 2). Surface Tenn.-Miss.-Ala.

### PALEOCENE

Subsurface So. Miss.-SE La.

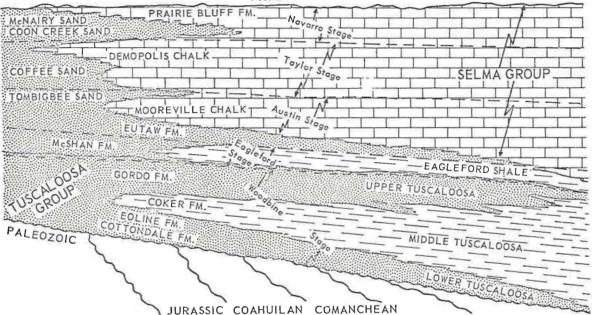



Figure 2.-Diagrammatic dip section of the Selma and Tuscaloosa Groups in eastern part of northern Gulf Coastal province showing an interpretation of (1) updip-downdip facies, (2) cyclical sequences, (3) rock-stratigraphic nomenclature which has commonly been applied in the region, and (4) supposed relationships to provincial stages (after Murray, 1961). GEOLOGY

The Lower Tuscaloosa was penetrated by 86 percent of the wells drilled. It is the oldest geologic unit mapped in this study and is easily identified lithologically and electrically.

#### **EUTAW FORMATION**

The Eutaw Formation includes the beds between the overlying Selma Group and the underlying Tuscaloosa Group. The formation was named for the town of Eutaw in Greene County, Alabama, by Hilgard in 1860. It was later redefined by Smith and Johnson in 1887.

The Eutaw Formation is composed of fine- to medium-grained gray to greenish-gray glauconitic micaceous sandstone, and lightgray to greenish-gray silty micaceous shale. The shale beds are often calcareous and carbonaceous. The upper part of the Eutaw is the Tombigbee Sand Member, a massive calcareous glauconitic sand with indurated layers and concretionary masses. The estimated average thickness of the Eutaw Formation is 400 feet.

#### SELMA GROUP

The Selma Group unconformably overlies the Eutaw Formation, and is overlain unconformably by the Clayton Formation of Paleocene age. In western Alabama, the Selma Group is comprised mainly of chalk with relatively little clastic material. In central Alabama and eastward the rocks grade from predominantly chalk to fossiliferous sand and clay, and the clastic materials become coarser (Eargle, 1950).

The present classification of the Selma Group is shown in the following table:

Classification of the Selma Group (after Eargle, 1950)

Western Alabama

Prairie Bluff Chalk

Eastern Alabama

Providence Sand Perote Member at base

Unconformity

Unconformity

#### GEOLOGY

Classification of the Selma Group-Continued Western Alabama Eastern Alabama

Ripley Formation Demopolis Chalk

Ripley Formation Cusseta Sand Member (at base)

Unconformity Mooreville Chalk Arcola Limestone Member (at top)

Blufftown Formation

The Mooreville Chalk is light gray to buff, clayey, and impervious, although on exposed surfaces it is jointed and fissile.

The Mooreville Chalk is approximately 400 feet thick and produces the gently sloping "Black Belt" topography. The beds of clayey chalk interfinger with sand and clay of the Blufftown Formation toward the east.

In Bullock County, the uppermost and the lowermost beds of the Mooreville grade into the two westward-extending tongues of the Blufftown Formation. The Blufftown Formation is composed of relatively impervious black to dark-gray carbonaceous silty and finely sandy clay with interbedded lenses of chalk and fine sand.

The Ripley Formation in central Alabama consists chiefly of light-gray calcareous micaceous very fine to medium-grained glauconitic sand, sandstone, and calcareous sandy clay, which weathers light yellow to orange red. The upper part contains several layers of light-gray to yellow hard calcareous sandstone.

The uppermost part of the Selma Group in western Alabama is the Prairie Bluff Chalk, equivalent to the upper formations of the Navarro Group of Texas, and composed of more or less sandy and clayey chalk. Eastward the formation grades laterally into the Providence Sand; first the upper part and then successively lower and lower beds of the chalk become sandy.

The top of the Selma Group was selected as a third mapping horizon. This top is easily recognized in Escambia, Covington, and Conecuh Counties, but east of these counties, correlation becomes increasingly difficult as the upper part of the chalk grades laterally into shale and finally into sand.

#### TERTIARY SYSTEM

In Alabama, the Tertiary formations consist of relatively unconsolidated marine sediments that are transitional in character between the clastic and largely nonmarine formations of Mississippi and the carbonate formations of the Florida peninsula. Tertiary sediments extend northward in Alabama into Sumter, Marengo, Wilcox, Butler, Crenshaw, Pike, and Barbour Counties. Downdip, these sediments thicken rapidly, attaining a thickness of 6,000 feet in Mobile County.

The Tertiary System has been extensively subdivided, especially on the surface in south Alabama. The Paleocene Series consists mainly of clay, marl, and shale in southwest Alabama. In central Alabama, these sediments become more calcareous and farther east they are predominantly limestone.

The Eocene Series, in southwest Alabama, consists mainly of sand, clayey sand, and silt, and in general, eastward, makes a transition to calcareous shale and limestone. The transition from a clastic to a carbonate facies occurs farther east in Eocene sediments than it does in the underlying Paleocene sediments.

The Oligocene Series is composed of calcareous shale, marl, and limestone in southwest Alabama. In central and eastern Alabama, limestone is the predominant lithology. Miocene and Pliocene sediments consist mainly of sand, sandstone, and gravel. The Citronelle Formation of Pliocene age, composed mainly of sand and gravel, covers much of the western part of the project area.

Most oil test wells drilled in the Coastal Plain of Alabama penetrated Tertiary sediments; therefore, a relatively large amount of subsurface data are available. However, because of the great number of facies changes occurring in the Tertiary it was beyond the scope of this project to attempt an interpretation. A separate study, investigating only the Tertiary formations of south Alabama, is suggested.

#### STRUCTURE

## STRUCTURE

The easternmost limit of the salt basin in Alabama extends through Escambia County (fig. 1). Most of the geologic structures detected in the Lower Cretaceous Series or in younger sediments in the salt basin are the result of movement of the underlying Louann Salt of Jurassic age. Salt responds as a plastic medium at depth and will move into zones of weakness in response to sediment onloading. Anticlines and domes are formed in sedimentary beds over salt swells and domes, and collapse-type features such as grabens are formed where salt was removed. The Gilbertown, Coffeeville-West Bend, and Pollard fault zones probably developed as a result of salt flowage or solution along the periphery of the salt basin.

East of the salt basin the influence of basement tectonics is of primary importance in evaluating structure. In all of the counties included in this study, with the exception of Escambia County, basement movement such as readjustment along faults, downwarping in response to sediment load, and igneous intrusions, is largely responsible for structure in overlying sediments.

The Cartersville, Brevard, Towaliga and Goat Rock fault zones (Crickmay, 1952) projected from north of the Fall Line into south Alabama are possibly responsible for some of the facies changes which occur in southeast Alabama. The east-west facies changes in Jurassic, Cretaceous, and Tertiary sediments possibly were caused by periodic rejuvenation of the fault zones (Joiner and Moore, 1966).

Geologic formations in southeast Alabama generally strike northwest-southeast and dip south-southwest at 20 to 50 feet per mile. East of Geneva County the strike becomes more east-west and the direction of dip is nearly due south.

The structural features in Escambia County are better known than those in other counties within the project area because of the large amount of data available from oil test wells drilled in and around the Pollard oil field in the south-central part of the county. The Pollard fault system (Marsh, 1966) extends from Florida into the south-central part of Escambia County, and continues northwestward for 35 miles into Baldwin County. A smaller northeastwardtrending fault system is indicated a few miles north of the Pollard oil field. Small faults with less than 50 feet of throw are indicated in wells 396, 479, 499, 467, 610, 161, and 468 in Escambia County.

A gentle structural nose along the county line between Crenshaw and Pike Counties is another structural feature of interest in southeast Alabama.

### LOWER TUSCALOOSA HORIZON

The altitude of the Lower Tuscaloosa ranges from 900 feet below sea level in the northwest corner of Barbour County to 6,250 feet below sea level in the southwest corner of Escambia County (pl. 1). The data on which the structure map on plate 1 is based are given in table 1. This horizon is important in southeast Alabama because it produces oil in the Pollard oil field in central Escambia County.

The Pollard oil field was discovered in January 1952 and nearly 10,000,000 barrels of 25.6° to 30.1° A.P.I. gravity oil have been produced. The Pollard fault, which is downthrown to the north and northeast, vertically displaces the Lower Tuscaloosa horizon 250 to 300 feet. Farther west, the displacement increases to 500 feet. Most of the production is from sands in the Lower Tuscaloosa on the upthrown side of the Pollard fault, but some oil is produced on the downthrown side of the fault from sands in the Upper Tuscaloosa (Winter, 1954). A map of the field, contoured on the top of the Lower Tuscaloosa horizon, is shown in figure 3. The productive area includes approximately 740 acres in secs. 11, 12, and 13, T. 1 N., R. 8 E., and secs. 7 and 18, T. 1 N., R. 9 E. The field is roughly 3¼ miles long and three-quarters of a mile wide.

In the northeast part of T. 2 N., R. 11 E., about 10 miles east of Pollard in Escambia County, a subtle southwest plunging nose is mapped. The axis of this feature approximates an imaginary line drawn through wells 168 and 529. Gently folded, southwestwardplunging noses are also mapped northeast of well 350 in Conecuh County and along the county line between Crenshaw and Pike Counties.

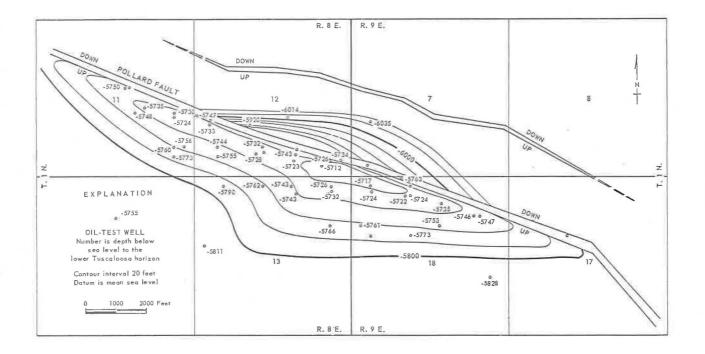



Figure 3.-Map showing structure, top of the Lower Tuscaloosa horizon, Pollard oil field (after Winter, 1954). STRUCTURE

13

#### **BASE OF SELMA GROUP MARKER**

Facies changes in the upper part of the Eutaw Formation occur downdip and along strike, and the top of the formation is not a correlative unit. Therefore, a marker bed was selected near the base of the overlying Selma Group for mapping purposes. This marker persists over the entire area and normally occurs between 100 and 200 feet above the first sand of the Eutaw Formation. The elevation of this bed ranges from sea level at the northwest corner of Barbour County to 5,000 feet below sea level in the southwest corner of Escambia County (pl. 1). The data on which this structure map is based are given in table 2.

Structural features mapped on this horizon are nearly the same as those described on the Lower Tuscaloosa structure map. Vertical displacement of the marker bed along the faults in Escambia County is not as great as the displacement of the Lower Tuscaloosa because of deposition contemporaneous with faulting.

# TOP OF SELMA GROUP

A structure map on the top of the Selma Group (pl. 1) exhibits the same general structural features as the structure maps for the two deeper horizons. The data on which the structure map is based are presented in table 3. Formations equivalent to the upper part of the Selma Group are exposed on the surface in Butler, Crenshaw, Pike, Bullock, and Barbour Counties. In the southwest corner of Escambia County, the elevation of the top of the Selma Group is about 3,800 feet below sea level.

The Selma Group changes from chalk in Escambia and Conecuh Counties to shale in eastern Covington County to sand in the eastern part of the project area. These changes and sparse well control make lithologic and electrical correlations across the project area very difficult.

The southwest-plunging nose along the county line between Crenshaw and Pike Counties is more pronounced on this horizon than on the deeper mapped horizons.

#### STRUCTURE

### LOWER TUSCALOOSA - BASE OF SELMA GROUP ISOPACH

The thickness of the interval between the top of the Lower Tuscaloosa and the base of the Selma Group ranges from less than 900 feet in the east and northeast part of the project area to more than 1,300 feet in the graben fault system near Pollard in Escambia County (pl. 1). The data on which this isopach map is based are given in table 4.

A northeast-trending "thin," extending from T. 4 N., R. 10 E. in Conecuh County to the northeast corner of Butler County, and a "thick" near the eastern boundary of Escambia County are possibly indicative of structure. The "thin" is parallel to the Appalachian trend indicating that thinning was possibly caused by basement tectonics.

#### BASE OF SELMA GROUP TO TOP OF SELMA GROUP

The Selma Group ranges in thickness from less than 900 feet in Houston County to more than 1,300 feet in Escambia County (pl. 1). The data on which this isopach map is based are given in table 5. Thickness trends of this interval are quite different from those for the Lower Tuscaloosa to base of Selma Group interval.

The thickness of the Selma Group in Covington County averages about 1,200 feet. This is thicker than it is over most of southeast Alabama indicating that the area was possibly a subsiding basin during deposition of the Selma Group. Southeast of the thick area in Covington County, the Selma Group begins to thin toward Geneva County where it is 1,000 feet thick.

# **CROSS SECTIONS**

Plates 2 through 7 (in pocket) are cross sections based upon electric log correlations of the formations studied in southeast Alabama. Plate 8 (in pocket) is a panel diagram which illustrates generally some of the facies changes which occur in southeast Alabama.

Cross sections A-A' and A'-A'' extend from well 456 in western Monroe County to well 489 in northeastern Coffee County, a distance of over 100 miles (pls. 2 and 3). The Lower Tuscaloosa horizon changes very little along this section. The most noticeable change occurs near the eastern end of the section in well 500 where fresh water in sands within the upper 175 feet is indicated by a sharp increase in resistivity values on the electric log. Well 489, the easternmost well of these two sections, was not drilled deep enough to penetrate the Lower Tuscaloosa horizon, but the fresh-water sands are probably present.

Electrical characteristics indicate that the lithology of the lower part of the Selma Group changes very little over the extent of these cross sections. However, higher than normal resistivity values near the base of the Selma Group on logs of wells 500 and 489 indicate more sand in this interval than in the same interval in wells to the west. Eastward from well 450, the lower part of the Selma Group, which typically is chalk, becomes increasingly clastic and electric logs exhibit higher resistivity values than normally recorded in chalk lithology.

A shale interval between the marker bed at the base of the Selma Group and the first sand of the Eutaw Formation thickens from 40 feet in well 719 to more than 200 feet in well 489. This change is significant because it indicates an eastward deepening of the sea during deposition of the Eutaw Formation.

A facies change that is easily detected on electric logs occurs in the upper part of the Selma Group. The electrical character on the log of well 456 is typical of this interval in southwest Alabama. A slight increase in resistivity values through this interval on logs from wells 668 and 437 indicates an eastward increase of clastic sediments. This probably marks the beginning of the change from chalk, typical of the downdip facies, to sand which occurs updip.

High resistivity values and a subdued S. P. (self potential) curve on the log of well 450 indicate that the upper part of the Selma Group is a clean sand saturated with fresh water. Data from wells east of well 450 indicate that the sand development continues eastward and thickens to as much as 500 feet in well 489. This sand is probably the downdip equivalent of the Ripley Formation which is mapped on the surface in Crenshaw, Pike, Bullock, and Barbour Counties.

#### CROSS SECTIONS

A facies change in the Midway Group is shown on this cross section. In well 456, a 10-foot interval having resistivity values slightly higher than the shale base line value occurs approximately 150 feet above the top of the Selma Group. An interval 15 feet thick with about the same electrical characteristics occurs in well 668 approximately 180 feet above the top of the Selma Group. In well 437, the interval is 30 feet thick and resistivity values are higher. Eastward from well 450, this interval continues to thicken and in well 719 in Butler County it is a highly resistant bed approximately 150 feet thick. The lithology of the interval is light-gray hard dense limestone. It is probably the downdip equivalent of the Clayton limestone which is mapped on the surface in Butler, Crenshaw, Pike, and Barbour Counties.

Cross section B-B' extends from well 719 in Butler County, southeastward across Covington County to well 417 in Coffee County (pl. 4).

The lithology of the Lower Tuscaloosa horizon changes very little along the line of this section. Resistivity curves on the electric logs indicate that sands within this horizon contain salt water.

High resistivity values throughout the sands of the Eutaw Formation in well 417 in Coffee County indicate fresh water. The Eutaw Formation is not used as a source for ground water in this area because adequate supplies are obtained from shallower aquifers.

Sands containing fresh water comprise the upper 150 feet of the Selma Group in well 719 in Butler County. The Selma Group below those fresh-water sands is composed of silty chalky shale. Downdip from well 719, the resistivity values throughout the upper part of the Selma Group in wells 326, 309, 183, and 182 are much lower than in well 719, indicating that the upper sands are changing to silty chalk, or silty calcareous shale toward south Butler County and north Covington County.

The top of the Selma Group is easily correlated from well 719 in Butler County through well 182 in Covington County. Eastward from well 182, resistivity values through the upper portion of the Selma Group become higher indicating an increase of clastic sediments. Slightly higher resistivity values in well 492 are the first evidence of an updip sandy facies in the upper part of the Selma Group. In well 417, at the extreme eastern end of the section, the upper 400 feet of the Selma Group is predominantly sand.

Eastward from well 492, a rapid facies change occurs within the lowermost 100 feet of the Midway Group. The interval changes from a clay and limestone lithology to a massive sand which contains fresh water. Many facies changes from limestone to shale to sand can be detected in the Midway Group by detailed correlation of the electric logs.

Cross sections C-C' and C'-C" extend southeastward from well 449 in eastern Monroe County across Conecuh, Covington, and Geneva Counties to well 238 in Houston County (pls. 5 and 6).

The lithology of the Lower Tuscaloosa horizon changes very little between Monroe County and Houston County. The only noticeable changes are in wells 615 and 238 where sands which are normally massive contain an unusual amount of shale, and in well 2380 where fresh water occurs in sands within the Upper Tuscaloosa horizon and the Eutaw Formation. These zones contain brackish or salt water in the other wells in the section.

Correlation of the top of the Selma Group from the northeast end of the section to the southeast end is difficult because of numerous changes in lithology. A predominantly shale lithology in the Selma Group is indicated in wells 513 and 452 in Covington County. Eastward, between wells 452 and 238, the Selma Group lithology is generally a soft gray marl, or a calcareous shale. In Houston County, extremely high resistivity values throughout the upper 200 feet of the Selma Group, in well 238, indicate a fresh water-bearing sand. This sand is probably the downdip equivalent of the Ripley Formation.

Cross section D-D' is a dip section extending from well 452 in Covington County to well 500 in Crenshaw County (pl. 7).

Fresh water is indicated in sands within the Upper Tuscaloosa horizon and the Eutaw Formation in wells 412 and 500 in Coffee and Crenshaw Counties respectively. These sands are not presently developed for fresh water because an adequate supply is available from shallower depths, but they should be considered potential aquifers for future development.

The upper part of the Selma Group changes from chalky shale downdip to porous sand updip. The facies change is vividly exhibited by the resistivity and S. P. curves on the electric logs used in this section. The log of well 452 has electrical characteristics typical of soft calcareous shale throughout the upper part of the Selma Group. Higher resistivity values recorded in well 381 indicate an increase in the amount of clastic sediments deposited in the upper part of the Selma Group, and mark the beginning of the facies change in an updip direction. Extremely high resistivity values recorded in well 412 indicate that the upper 450 feet of the Selma Group is porous fresh water-bearing sand. Higher than normal resistivity values on this log also indicate that the amount of clastic sediments in the lower part of the Selma Group is increasing in the updip direction. High resistivity values are recorded throughout the entire Selma Group in well 500 indicating that approximately 1.200 feet of sand and very silty shale were deposited.

#### SUMMARY

Gentle noses and abrupt changes in thickness and rate of dip on the regional maps are possibly indicative of small structures. More test drilling and geophysical work is needed to evaluate the region in detail.

The Pollard oil field proves the existence of source and reservoir beds in Escambia County, and new oil fields will be discovered in this county. Covington and Conecuh Counties have good oil and gas producing potential, particularly from sediments of Jurassic age. Test wells which have been drilled in other parts of the study area offer little encouragement for petroleum production at this time, but most of the area remains virtually untested. Future exploration will discover other commercial oil accumulations in south and southeast Alabama.

Sands in the Eutaw Formation and upper Tuscaloosa horizon are potential fresh-water aquifers in Crenshaw, Coffee, and Houston Counties where they are not presently being developed. In view of the nation's increasing demand for water, these potential sources should be evaluated for quantity and quality.

#### SELECTED REFERENCES

- Applin, P. L., 1951, Preliminary report on buried pre-Mesozoic rocks in Florida and adjacent states: U.S. Geol. Survey Circ. 91, 28 p.
- Applin, P. L., and Applin, E. R., 1947, Regional subsurface stratigraphy, structure, and correlation of Middle and early Upper Cretaceous rocks in Alabama, Georgia, and north Florida: U.S. Geol. Survey Oil and Gas Inv. Prelim. Chart 26.

1957, Note 62, in Reeside, J. B., Jr., et al, Correlation of the Triassic formations of North America exclusive of Canada: Geol. Soc. America Bull., v. 68, p. 1486-1489.

- Conant, L. C., Eargle, D. H., Monroe, W. H., and Morris, J. H., 1945, Geologic map of Tuscaloosa and Cottondale quadrangles, Alabama, showing areal geology and structure of Upper Cretaceous formations: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 37.
- Crickmay, G. W., 1952, Geology of the crystalline rocks of Georgia: Georgia Geol. Survey Bull. 58, 54 p.
- Drennen, C. W., 1953, Stratigraphy and structure of outcropping pre-Selma Coastal Plain beds of Fayette and Lamar Counties, Alabama: U.S. Geol. Survey Circ. 267, 9 p.
- Eargle, D. H., 1950, Geologic map of the Selma Group in eastern Alabama: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 105.
- Hazzard, R. T., Blanpied, B. W., and Spooner, W. C., 1947, Notes on correlations of the Cretaceous of east Texas, south Arkansas, north Louisiana, Mississippi and Alabama: Shreveport Geol. Soc. 1945 Ref. Rept., v. 2, p. 472-481.
  1947, Notes on the stratigraphy of the formations which underlie the Smackover Limestone in south Arkansas, northeast Texas, and north Louisiana: Shreveport Geol. Soc. 1945 Ref. Rept., v. 2, p. 483-503.
- Hilgard, E. W., 1860, Report on the geology and agriculture of the State of Mississippi: Jackson, 391 p.
- Joiner, T. J., and Moore, D. B., 1966, Structural features in south Alabama, *in* Alabama Geol. Soc. Guidebook 4th Ann. Field Trip, south Alabama; p. 11-19.
- King, P. B., 1961, The subsurface Ouachita structural belt east of the Ouachita Mountains, *in* Flawn, P. T., and others, The Ouachita System: Bur. Economic Geology, Univ. Texas Pub. 6120, p. 83-98, pl. 3.
- MacNeil, F. S., 1946, Geologic map of the Tertiary formations of Alabama: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 45.
- Marsh, O. T., 1966, Geology of Escambia and Santa Rosa Counties, western Florida panhandle: Florida Geol. Survey Bull. 46, 140 p.


\_\_\_\_\_1967, Evidence for deep salt deposits in western Florida panhandle: Am. Assoc. Petroleum Geologists Bull., v. 51, no. 2, p. 212-222.

- McKee, E. D., and others, 1959, Paleotectonic maps of the Triassic System: U.S. Geol. Survey Misc. Geol. Inv. Map I-300, 33 p., 9 pls.
- Mississippi Geological Society, 1957, Mesozoic-Paleozoic producing areas of Mississippi and Alabama: Mississippi Geol. Soc., 139 p.
- Monroe, W. H., 1941, Notes on deposits of Selma and Ripley age in Alabama: Alabama Geol. Survey Bull. 48, 150 p.
- Murray, G. E., 1961, Geology of the Atlantic and Gulf coastal province of North America: New York, Harper and Brothers Publishers, 692 p.

20

Smith, E. A., and Johnson, L. C., 1887, Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama Rivers: U.S. Geol. Survey Bull. 43, 189 p.

Winter, C. V., Jr., 1954, Pollard field, Escambia County, Alabama: Gulf Coast Assoc. Geol. Soc. Trans., v. 4, p. 121-142.



#### A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

## Table 1.-Elevation of the top of the Lower Tuscaloosa

Permit No. - State Oil and Gas Board permit number Elevation - feet below mean sea level

| Permit No. | Elevation | Permit No. | Elevation | Permit No. | Elevation |
|------------|-----------|------------|-----------|------------|-----------|
|            |           | Barbour    | County    |            |           |
| 162        | -1345     |            | 5         |            |           |
| B-321      | -1860     |            |           |            |           |
|            |           | Bullock    | County    |            |           |
| 86         | - 750     |            |           |            |           |
| 92         | -1100     |            |           |            |           |
| 24-A       | -1264     |            |           |            |           |
|            |           | Butler C   | ounty     |            |           |
| 326        | -3175     |            |           |            |           |
| 308        | -3245     |            |           |            |           |
| 000        | 0240      | Coffee (   | County    |            |           |
| 412        | -2638     |            |           |            |           |
| 412<br>542 | -2852     |            |           |            |           |
| 542<br>417 | -2052     |            |           |            |           |
| 417        | -2920     | Conecuh    | County    |            |           |
|            |           |            |           | 5.40       |           |
| 204        | -3880     | 560        | -4474     | 549        | -2902     |
| 350        | -3387     | 675        | -3591     | 472        | -3838     |
| 469        | -4013     | 397        | -4042     | 390        | -4084     |
| 410        | -4129     | 132        | -4417     |            |           |
|            |           | Covington  | -         |            |           |
| 309        | -3379     | 183        | -3504     | 492        | -3156     |
| 182        | -3404     | 381        | -3079     | 513        | -4062     |
| 452        | -3839     | 17         | -4402     |            |           |
|            |           | Crenshaw   | County    |            |           |
| 145        | -2646     |            |           |            |           |
| 500        | -2377     |            |           |            |           |
|            |           | Escambia   | County    |            |           |
| 669        | -5972     | 413        | -5684     | 22         | -4800     |
| 550        | -5805     | 491        | -5837     | 90         | -4938     |
| 567        | -6012     | 396        | -5032     | 149        | -5034     |
| 645        | -5454     | 610        | -5325     | 478        | -5066     |
| 521        | -6096     | 467        | -5385     | 477        | -4969     |
| 470        | -6052     | 506        | -5478     | 475        | -5147     |
| 483        | -5860     | 420        | -5486     | 59         | -5216     |
| 586        | -5808     | 556        | -5506     | 529        | -5360     |
| 497        | -5781     | 508        | -5957     | 424        | -5502     |
| 341        | -6270     | 726        | -6139     | 524        | -5469     |
| 360        | -5876     | 340        | -6267     | 461        | -5444     |
| 476        | -6007     | 351        | -6250     | 435        | -5431     |
| 221        | -6107     | 359        | -6265     | 171        | -4429     |

24

## TABLES

| Permit No. | Elevation     | Permit No.    | Elevation | Permit No. | Elevation |
|------------|---------------|---------------|-----------|------------|-----------|
|            |               | Essentia Gam  |           |            |           |
|            |               | Escambia Coun | •         |            |           |
| 559        | -5298         | 510           | -5855     | 37         | -4553     |
| 464        | -5362         | 352           | -5920     | 716        | -4637     |
| 763        | -5827         | 349           | -5921     | 168        | -4874     |
| 530        | -5794         | 468           | -4851     | 391        | -5063     |
| 376        | -5982         | 50            | -4803     | 496        | -5189     |
| 463        | -5991         | 161           | -5058     | 541        | -5247     |
| 1168       | -5215         | 197           | -5831     | 398        | -4447     |
| 479        | -5375         | 362           | -5866     | 583        | -4722     |
| 499        | -5412         | 327           | -5827     | 522        | -4989     |
| 436        | -5480         | 582           | -6075     | 485        | -5623     |
| 462        | -6074         | 429           | -6193     | 431        | -5527     |
| 602        | -5986         | 525           | -5020     | 1273       | -6208     |
| 157        | -5517         | 588           | -5918     | 58         | -5531     |
| 764        | -5719         | 176           | -4760     |            |           |
|            |               | Geneva        | County    |            |           |
| S-3        | -3584         | 169           | -3805     | 555        | -3611     |
| 591        | -3613         | 130           | -3634     | 514        | -3554     |
| 817        | -3565         | 439           | -3080     | 615        | -3212     |
|            | 7.50.000.0000 | Henry (       | County    |            |           |
| 631        | -2635         |               |           |            |           |
| 392        | -2698         |               |           |            |           |
| 072        | -2090         | Houston       | County    |            |           |
| 100        | 0075          | Houston       | County    |            |           |
| 426        | -2875         |               |           |            |           |
| 186        | -3163         |               | 1         |            |           |
| 238        | -2887         |               |           |            |           |
|            |               | Pike C        | ounty     |            |           |
| 184        | -2174         |               |           |            |           |
| 118        | -2367         |               |           |            |           |

Table 1,-Elevation of the top of the Lower Tuscaloosa-Continued

## A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

# Table 2 .- Elevation of the base of the Selma Group

Permit No. - State Oil and Gas Board permit number Elevation - feet below mean sea level

| Permit No. | Elevation     | Permit No. | Elevation | Permit No. | Elevation |
|------------|---------------|------------|-----------|------------|-----------|
|            |               | Barbour    | County    |            |           |
| B-321      | - 796         |            |           |            |           |
| 162        | - 466         |            |           |            |           |
|            |               | Bullock    | County    |            |           |
| 1311       | - 450         | 92         | - 350     | 86         | - 62      |
|            | est.          |            | 000       |            | 02        |
| 1325       | - 508         |            |           |            |           |
|            | est.          |            |           |            |           |
|            |               | Butler C   | County    |            |           |
| 719        | -1644         |            |           | 1          |           |
| 326        | -2134         |            |           |            |           |
| 308        | -2158         |            |           |            |           |
|            |               | Coffee (   | County    |            |           |
| 412        | -1650         | 417        | -1925     | 489        | -1440     |
| S-4        | -2470         | 542        | -1867     |            |           |
|            |               | Conecuh    | County    |            |           |
| 204        | -2761         | 560        | -3369     | 549        | -1740     |
| 350        | -2347         | 675        | -2538     | 472        | -2798     |
| 469        | -2954         | 397        | -2988     | 390        | -3027     |
| 410        | -3084         | 132        | -3057     |            |           |
|            |               | Covington  | County    |            |           |
| 309        | -2335         | 183        | -2444     | 492        | -2130     |
| 182        | -2357         | 381        | -2087     | 513        | -2980     |
| 452        | -2762         | 17         | -3269     |            |           |
|            |               | Crenshaw   | County    |            |           |
| 145        | <b>∘</b> 1642 |            |           |            |           |
| 500        | -1426         |            |           |            |           |
|            |               | Escambia   | County    |            |           |
| 550        | -4545         | 529        | -4225     | 424        | -4365     |
| 524        | -4325         | 567        | -4809     | 461        | -4293     |
| 645        | -4207         | 435        | -4258     | 521        | -4716     |
| 171        | -3318         | 470        | -4729     | 37         | -3427     |
| 483        | -4600         | 716        | -3525     | 586        | -4558     |
| 168.       | -3744         | 391        | -3907     | 341        | -4896     |
| 496        | -4029         | 360        | -4630     | 541        | -4087     |
| 476        | -4745         | 398        | -3292     | 221        | -4851     |
| 583        | -3503         | 559        | -4087     | 522        | -3761     |
| 464        | -4147         | 485        | -4385     | 747        | -5027     |
| 431        | -4330         | 763        | -4632     | 530        | -4545     |
| 376        | -4750         | 463        | -4748     | 1168       | -4019     |
| 479        | -4153         | 499        | -4200     | 436        | -4262     |

# TABLES

| Permit No. | Elevation      | Permit No.    | Elevation    | Permit No. | Elevation |
|------------|----------------|---------------|--------------|------------|-----------|
|            |                | Escambia Coun | ty-Continued |            |           |
| 462        | -4688          | 602           | -4662        | 1273       | -4855     |
| 764        | -4518          | 413           | -4496        | 396        | -3870     |
| 610        | -4104          | 467           | -4152        | 506        | -4301     |
| 420        | -4711          | 556           | -4640        | 508        | -4604     |
| 726        | -4790          | 340           | -4834        | 351        | -4843     |
| 359        | -4856          | 352           | -4704        | 349        | -4678     |
| 468        | -3693          | 50            | -3671        | 161        | -3856     |
| 197        | -4627          | 362           | -4612        | 582        | -4754     |
| 429        | -4825          | 525           | -3838        | 157        | -4266     |
| 58         | -4382          | 176           | -3628        | 22         | -3664     |
| 90         | -3792          | 149           | -3896        | 478        | -3927     |
| 477        | -3836          | 475           | -4002        | 59         | -4072     |
| 211        | 0000           | Geneva        |              |            |           |
| S-3        | -2575          | 169           | -2828        | 555        | -2623     |
| 591        | -2643          | 130           | -2678        | S-1        | -2683     |
| 514        | -2584          | S-2           | -2631        | 817        | -2616     |
| 439        | -2155          | 615           | -2286        | 011        | 2010      |
| 107        | 2100           | Henry (       |              |            |           |
| 631        | -1723          |               |              |            |           |
| 392        | -1788          |               |              |            |           |
| 072        | -1700          | Houston       | County       |            |           |
| 496        | 1050           | Housion       | County       |            |           |
| 426        | -1950          |               |              |            |           |
| 186        | -2263<br>-1995 | 1             |              |            |           |
| 238        | -1992          | Pike C        | ounty        |            |           |
| 101        | 1 0 0 0        | PIKe C        | ounty        |            |           |
| 184        | -1238          |               |              |            |           |
| 118        | -1428          |               |              |            |           |

Table 2 .- Elevation of the base of the Selma Group-Continued

#### A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

## Table 3.-Elevation of the top of the Selma Group

Permit No. - State Oil and Gas Board permit number Elevation - feet below mean sea level

| Permit No. | Elevation      | Permit No.        | Elevation      | Permit No. | Elevation |
|------------|----------------|-------------------|----------------|------------|-----------|
|            |                | Butler (          | Sounty         |            |           |
| 719        | - 435          | Dutter            | Jounty         |            |           |
| 326        |                |                   |                |            |           |
| 320        | - 895<br>- 914 |                   |                |            |           |
| 300        | = 914          | Coffee            | County         |            |           |
| 41.0       | - 411          | 489               | -              | 540        | 600       |
| 412<br>417 | - 662          | 489<br>S=4        | - 218<br>-1241 | 542        | - 603     |
| 417        | - 002          | Conecuh           |                |            |           |
| 204        | 1501           | 469               | -1769          | 500        | 01(1      |
| 204<br>397 | -1591<br>-1787 | 409<br>549        | - 562          | 560        | -2161     |
|            | -1193          | 410               | - 362<br>-1881 | 390        | -1828     |
| 350        | -1872          | 410               | -1626          | 675        | -1394     |
| 132        | °10/2          | Covington         |                | 103        | -2006     |
|            | 1050           | 0                 | 0              | 100        |           |
| 309        | -1058          | 381               | - 815          | 183        | -1176     |
| 513        | -1732          | 492               | - 879          | 452        | -1515     |
| 182        | -1107          | 17<br>Cross share | -2036          |            |           |
|            |                | Crenshaw          | County         |            |           |
| 145        | - 416          |                   |                |            |           |
| 500        | - 177          |                   | C I            |            |           |
|            |                | Escambia          | v              |            |           |
| 669        | -3487          | 176               | -2404          | 550        | -3478     |
| 22         | -2426          | 1281              | -3613          | 90         | -2577     |
| 567        | -3612          | 149               | -2645          | 645        | -3083     |
| 478        | -2685          | 521               | -3424          | 477        | -2590     |
| 470        | -3459          | 475               | -2725          | 59         | -2778     |
| 586        | -3685          | 529               | -2908          | 497        | -3639     |
| 424        | -2990          | 341               | -3548          | 524        | -3037     |
| 461        | -2967          | 476               | -3530          | 435        | -2927     |
| 221        | -3635          | 171               | -2098          | 559        | -2907     |
| 37         | -2211          | 747               | -3604          | 716        | -2298     |
| 168        | -2501          | 763               | -3633          | 391        | -2616     |
| 530        | -3642          | 496               | -2707          | 376        | -3510     |
| 541        | -2784          | 463               | -3493          | 398        | -2051     |
| 1168       | -2840          | 583               | -2235          | 479        | -2977     |
| 522        | -2491          | 499               | -2986          | 485        | -3103     |
| 436        | -3031          | 431               | -3007          | 462        | -3283     |
| 602        | -3415          | 1273              | -3430          | 1310       | -3451     |
| 588        | -3314          | 764               | -3368          | 413        | -3526     |
| 491        | -3422          | 396               | -2693          | 610        | -2835     |
| 467        | -2920          | 506               | -3021          | 420        | -3262     |

| Permit No. | Elevation | Permit No.    | Elevation    | Permit No. | Elevation |
|------------|-----------|---------------|--------------|------------|-----------|
|            |           |               |              |            |           |
|            |           | Escambia Coun | ty-Continued |            |           |
| 556        | -3248     | 508           | -3187        | 726        | -3358     |
| 340        | -3343     | 351           | -3377        | 359        | -3409     |
| 510        | -3391     | 352           | -3370        | 349        | -3329     |
| 468        | -2500     | 50            | -2432        | 161        | -2624     |
| 197        | -3317     | 362           | -3390        | 327        | -3478     |
| 582        | -3330     | 429           | -3374        | 525        | -2590     |
| 157        | -2963     | 58            | -3054        | 464        | -3020     |
|            |           | Geneva        | County       |            |           |
| S-3        | -1332     | 169           | -1772        | 555        | -1546     |
| 591        | -1581     | 130           | -1663        | S-1        | -1675     |
| 514        | -1531     | S-2           | -1599        | 817        | -1587     |
| 439        | -1142     | 615           | -1288        |            |           |
|            |           | Houston       | County       |            |           |
| 426        | - 967     |               |              |            |           |
| 186        | -1352     |               |              |            |           |
| 238        | -1073     |               |              |            |           |
|            |           | Pike C        | ounty        |            |           |
| 184        | - 24      |               | ·            |            |           |
| 118        | - 217     |               |              |            |           |
| 110        |           |               |              |            |           |

Table 3.-Elevation of the top of the Selma Group-Continued

#### A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

# Table 4.-Thickness of the interval between the base of the Selma Group and the top of the Lower Tuscaloosa

| Permit No. | Thi <b>c</b> kness<br>(feet) | Permit No. | Thi <b>c</b> kness<br>(feet) | Permit No. | Thickness<br>(feet) |
|------------|------------------------------|------------|------------------------------|------------|---------------------|
|            |                              | Butler C   | ounty                        |            |                     |
| 719        | -1113                        | Sumer e    | ounty                        |            |                     |
| 326        | -1041                        |            |                              |            |                     |
| 320        | -1041                        |            |                              |            |                     |
| 308        | -1007                        | Coffee (   | ounty                        |            |                     |
| (10        | 000                          | Conce v    | Jounty                       |            |                     |
| 412        | - 988                        |            |                              |            |                     |
| 542        | - 985                        | Canaauh    | Country                      |            |                     |
|            |                              | Conecuh    |                              |            |                     |
| 204        | -1119                        | 560        | -1105                        | 549        | -1162               |
| 350        | -1040                        | 675        | -1053                        | 472        | -1040               |
| 469        | -1059                        | 397        | -1045                        | 390        | -1057               |
| 410        | -1045                        | 132        | -1060                        |            |                     |
|            |                              | Covington  |                              |            |                     |
| 309        | -1044                        | 381        | - 992                        | 183        | -1060               |
| 513        | -1082                        | 492        | -1026                        | 452        | -1077               |
| 182        | -1047                        | 17         | -1133                        |            |                     |
|            |                              | Crenshaw   | County                       |            |                     |
| 145        | -1004                        |            |                              |            |                     |
| 500        | - 951                        |            |                              |            |                     |
|            |                              | Escambia   | County                       | 1          |                     |
| 550        | -1260                        | 351        | -1407                        | 359        | -1409               |
| 352        | -1216                        | 645        | -1247                        | 349        | -1243               |
| 521        | -1380                        | 468        | -1158                        | 470        | -1323               |
| 483        | -1260                        | 161        | -1202                        | 197        | -1204               |
| 362        | -1254                        | 341        | -1374                        | 360        | -1246               |
| 582        | -1321                        | 476        | -1262                        | 429        | -1368               |
| 559        | -1211                        | 221        | -1256                        | 525        | -1182               |
| 157        | -1251                        | 464        | -1215                        | 58         | -1149               |
| 176        | -1132                        | 763        | -1195                        | 22         | -1136               |
| 530        | -1192                        | 90         | -1146                        | 376        | -1232               |
| 149        | -1144                        | 463        | -1243                        | 478        | -1139               |
| 1168       | -1196                        | 477        | -1133                        | 479        | -1222               |
| 475        | -1145                        | 499        | -1212                        | 59         | -1144               |
| 436        | -1218                        | 529        | -1135                        | 462        | -1386               |
| 424        | -1137                        | 602        | -1324                        | 524        | -1144               |
| 1273       | -1336                        | 461        | -1151                        | 435        | -1173               |
| 588        | -1226                        | 171        | -1111                        | 37         | -1126               |
| 716        | -1111                        | 168        | -1130                        | 396        | -1162               |
|            |                              | 391        | -1156                        | 610        | -1221               |
| 496        | -1160                        | 467        | -1233                        | 541        | -1160               |
| 506        | -1177                        | 398        | -1155                        | 420        | - 775               |

Permit No. - State Oil and Gas Board permit number

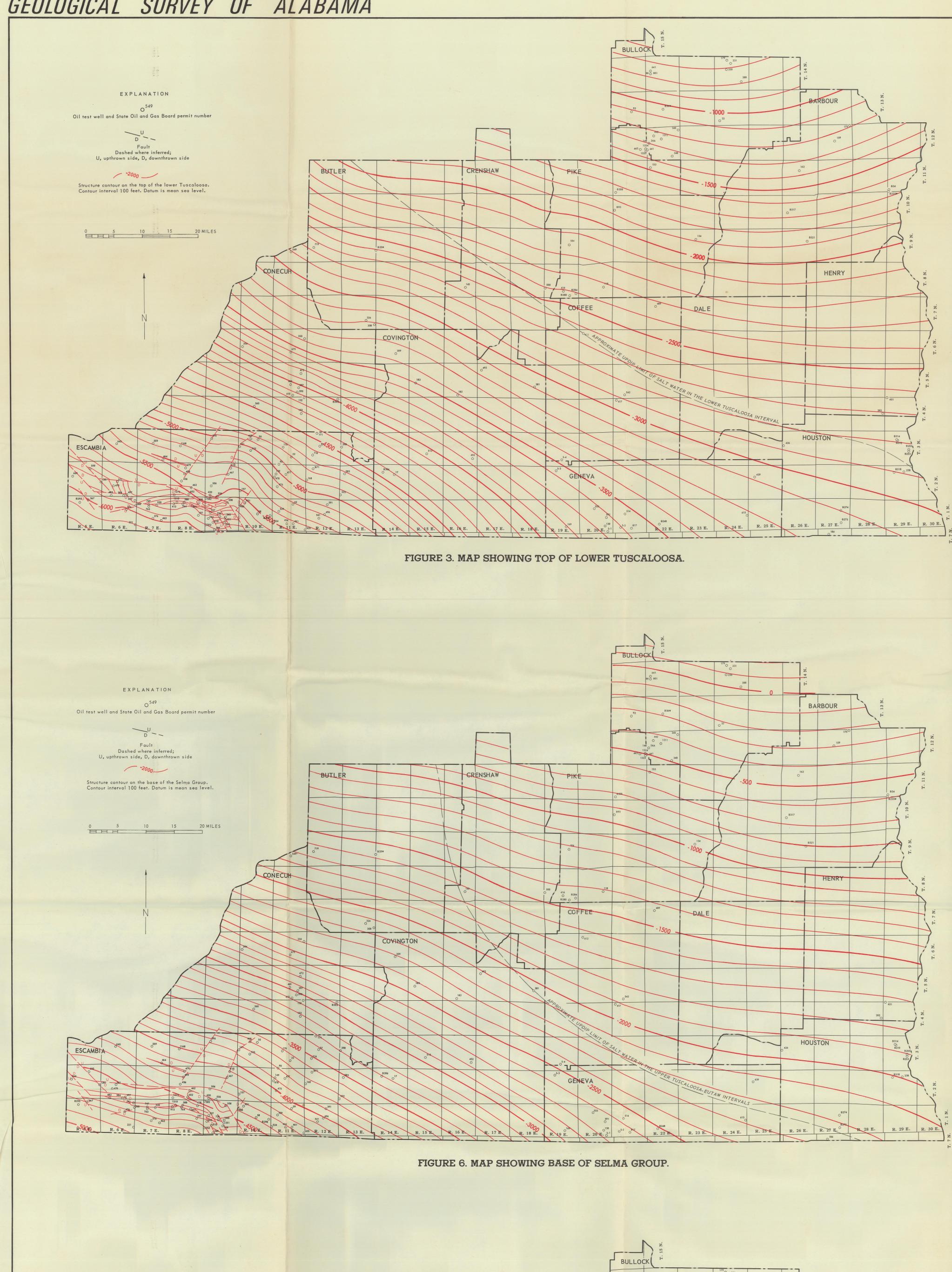
| Permit No. | Thickness<br>(feet) | Permit No.    | Thi <b>c</b> kness<br>(feet) | Permit No. | Thickness<br>(feet) |
|------------|---------------------|---------------|------------------------------|------------|---------------------|
|            |                     | Escambia Cour | ty_Continued                 |            |                     |
| 583        | -1219               | 556           | - 866                        | 522        | -1228               |
| 508        | -1353               | 485           | -1238                        | 726        | -1349               |
| 431        | -1197               | 340           | -1433                        |            | 1017                |
|            |                     | Geneva        |                              |            |                     |
| S-3        | -1009               | 514           | - 970                        | 169        | - 977               |
| 555        | - 988               | 817           | - 949                        | 591        | - 970               |
| 439        | - 925               | 130           | - 956                        | 615        | - 926               |
|            |                     | Henry (       | County                       |            |                     |
| 631        | - 912               |               |                              | 1          |                     |
| 392        | - 910               |               |                              |            |                     |
|            |                     | Houston       | County                       |            |                     |
| 426        | - 925               |               |                              | 1          |                     |
| 186        | - 900               |               |                              | 1          |                     |
| 238        | - 892               |               |                              | 1          |                     |
| 0.000      |                     | Pike C        | ounty                        | 1          |                     |
| 184        | - 936               |               |                              |            |                     |
| 118        | - 939               |               |                              |            |                     |
| 110        | - 303               |               |                              |            |                     |

## Table 4.-Thickness of the interval between the base of the Selma Group and the top of the Lower Tuscaloosa-Continued

# A SUBSURFACE STUDY OF SOUTHEAST ALABAMA

# Table 5 .- Thickness of Selma Group

Permit No. - State Oil and Gas Board permit number


| Permit No. | Thi <b>c</b> kness<br>(feet) | Permit No. | Thi <b>c</b> kness<br>(feet) | Permit No. | Thickness<br>(feet) |
|------------|------------------------------|------------|------------------------------|------------|---------------------|
|            |                              | Butler (   | County                       |            |                     |
| 719        | -1209                        |            |                              |            |                     |
| 326        | -1239                        |            |                              |            |                     |
| 308        | -1244                        |            |                              |            |                     |
|            |                              | Coffee     | County                       |            |                     |
| 412        | -1239                        | 417        | -1263                        | 489        | -1241               |
| S-4        | -1254                        | 542        | -1263                        |            |                     |
|            |                              | Conecuh    | County                       |            |                     |
| 204        | -1171                        | 560        | -1208                        | 549        | -1178               |
| 350        | -1154                        | 675        | -1144                        | 472        | -1172               |
| 469        | -1185                        | 397        | -1210                        | 390        | -1199               |
| 410        | -1203                        | 132        | -1185                        |            |                     |
|            |                              | Covington  | County                       |            |                     |
| 309        | -1277                        | 183        | -1268                        | 492        | -1252               |
| 182        | -1251                        | 381        | -1272                        | 513        | -1251               |
| 452        | -1250                        | 17         | -1233                        |            |                     |
|            |                              | Crenshav   | v County                     |            |                     |
| 145        | -1226                        |            |                              |            |                     |
| 500        | -1242                        |            |                              |            |                     |
|            | 12.12                        | Escambia   | a County                     |            |                     |
| 340        | -1491                        | 550        | -1067                        | 351        | -1468               |
| 359        | -1449                        | 645        | -1124                        | 352        | -1334               |
| 521        | -1293                        | 349        | -1352                        | 468        | -1193               |
| 483        | -1092                        | 161        | -1232                        | 197        | -1310               |
| 341        | -1348                        | 362        | -1222                        | 582        | -1424               |
| 221        | -1216                        | 429        | -1451                        | 559        | -1189               |
| 525        | -1248                        | 464        | -1128                        | 157        | -1303               |
| 747        | -1423                        | 58         | -1328                        | 176        | -1224               |
| 530        | - 903                        | 22         | -1238                        | 376        | -1240               |
| 90         | -1215                        | 463        | -1255                        | 149        | -1245               |
| 1168       | -1179                        | 478        | -1242                        | 479        | -1176               |
| 477        | -1246                        | 499        | -1214                        | 475        | -1275               |
| 436        | -1231                        | 59         | -1294                        | 462        | -1408               |
| 529        | -1317                        | 602        | -1247                        | 524        | -1335               |
| 461        | -1326                        | 588        | -1378                        | 435        | -1331               |
| 171        | -1220                        | 37         | -1216                        | 716        | -1228               |
| 396        | -1177                        | 168        | -1243                        | 610        | -1269               |
| 391        | -1291                        | 467        | -1232                        | 496        | -1322               |
| 506        | -1281                        | 541        | -1303                        | 420        | <b>-1450</b>        |
| 398        | -1241                        | 556        | -1392                        | 583        | -1268               |

l

I

| Permit No. | Thickness<br>(feet) | Permit No.    | Thi <b>c</b> kness<br>(feet) | Permit No. | Thi <b>ckn</b> ess<br>(feet) |
|------------|---------------------|---------------|------------------------------|------------|------------------------------|
|            |                     |               |                              |            |                              |
|            |                     | Escambia Cour | ty-Continued                 |            |                              |
| 508        | -1419               | 522           | -1270                        | 726        | -1434                        |
| 485        | -1282               | 431           | -1323                        |            |                              |
|            |                     | Geneva        | County                       |            |                              |
| S-3        | -1243               | 169           | -1056                        | 555        | -1077                        |
| 591        | -1062               | 130           | -1015                        | S-1        | -1008                        |
| 514        | -1053               | S-2           | -1032                        | 817        | -1029                        |
| 439        | -1000               | 615           | - 988                        |            |                              |
|            |                     | Houston       | County                       |            |                              |
| 426        | - 978               |               |                              | 1          |                              |
| 186        | - 913               |               |                              |            |                              |
| 238        | - 869               |               |                              |            |                              |
|            |                     | Pike C        | ounty                        |            |                              |
| 184        | -1215               |               |                              |            |                              |
| 118        | -1211               |               |                              | 1          |                              |
|            |                     |               |                              |            |                              |

# Table 5 .- Thickness of Selma Group-Continued



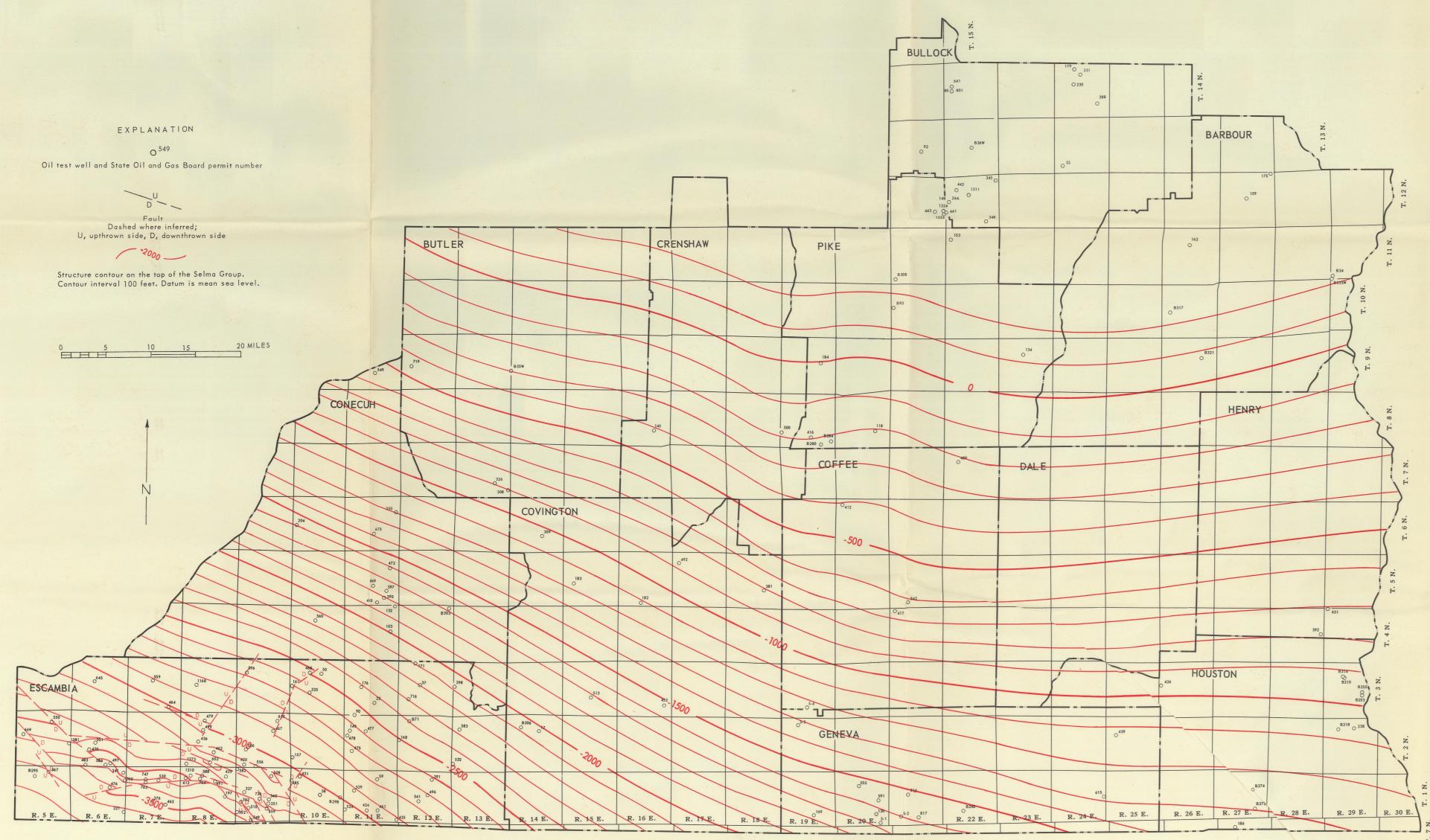



FIGURE 7. MAP SHOWING TOP OF SELMA GROUP.

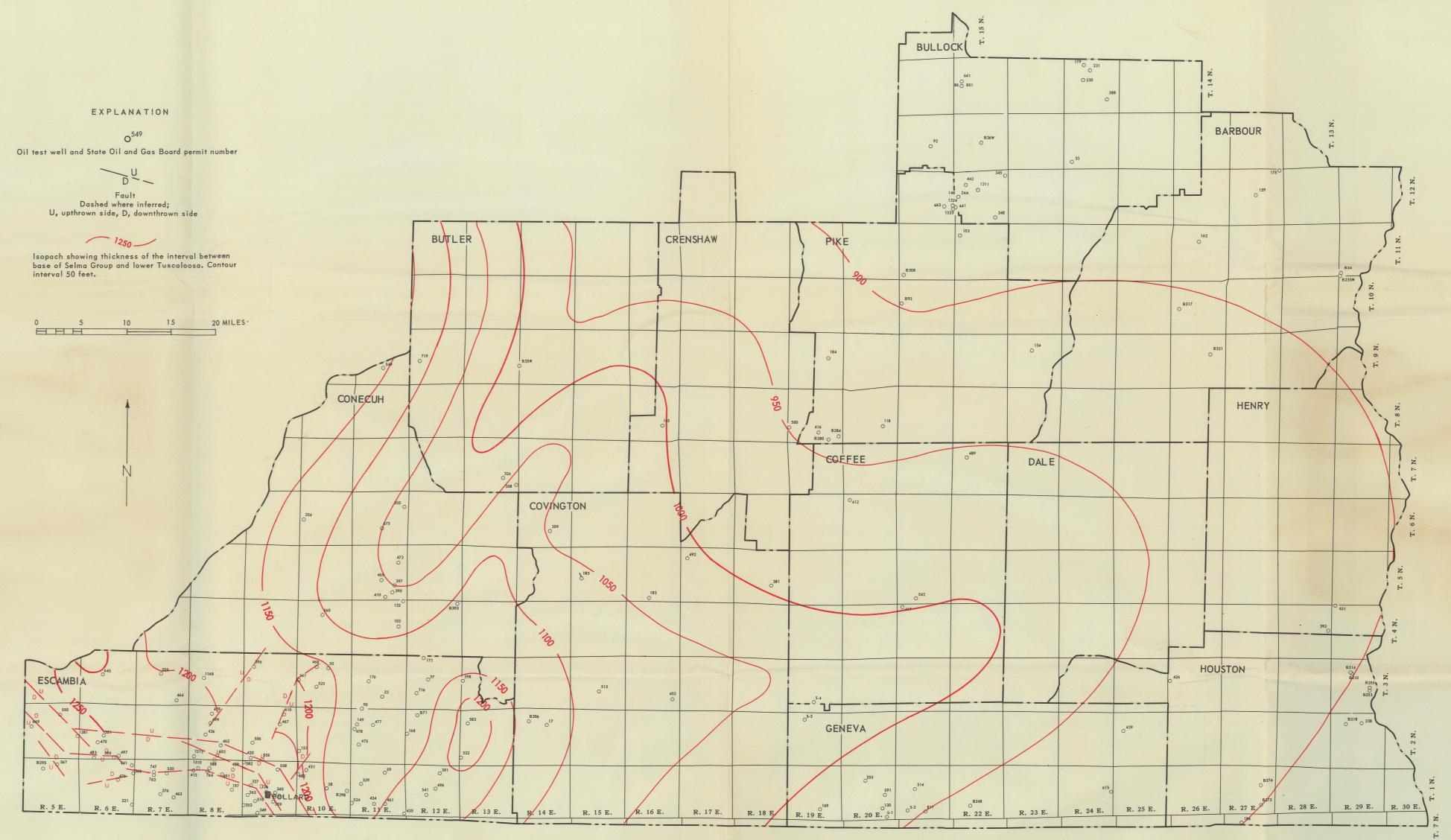



FIGURE 5. MAP SHOWING THICKNESS OF INTERVAL BETWEEN BASE OF SELMA GROUP AND LOWER TUSCALOOSA.

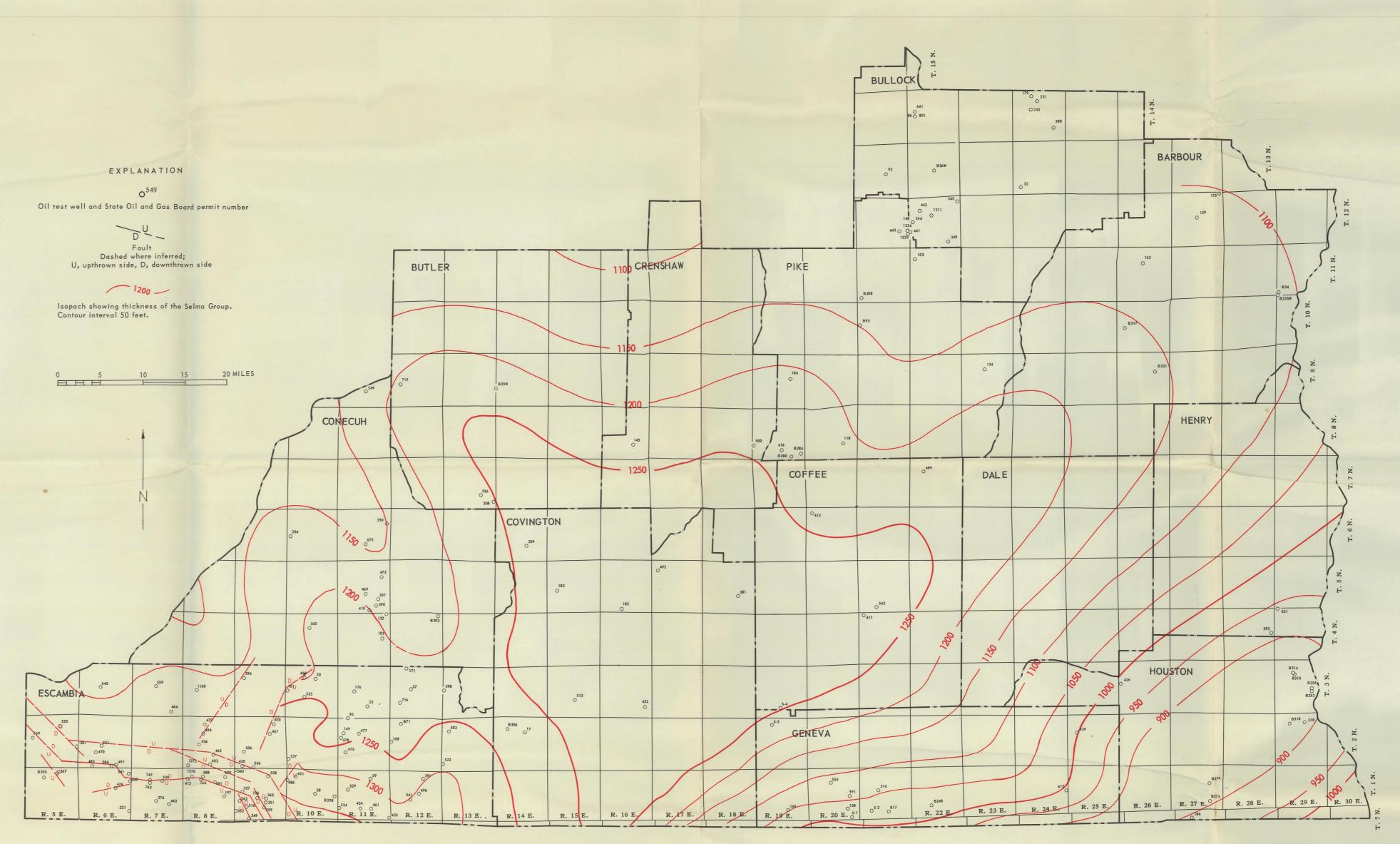
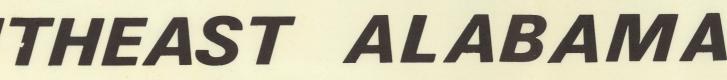




FIGURE 8. MAP SHOWING THICKNESS OF SELMA GROUP.

SUBSURFACE GEOLOGY OF SOUTHEAST ALABAMA

BULLETIN 88 PLATE



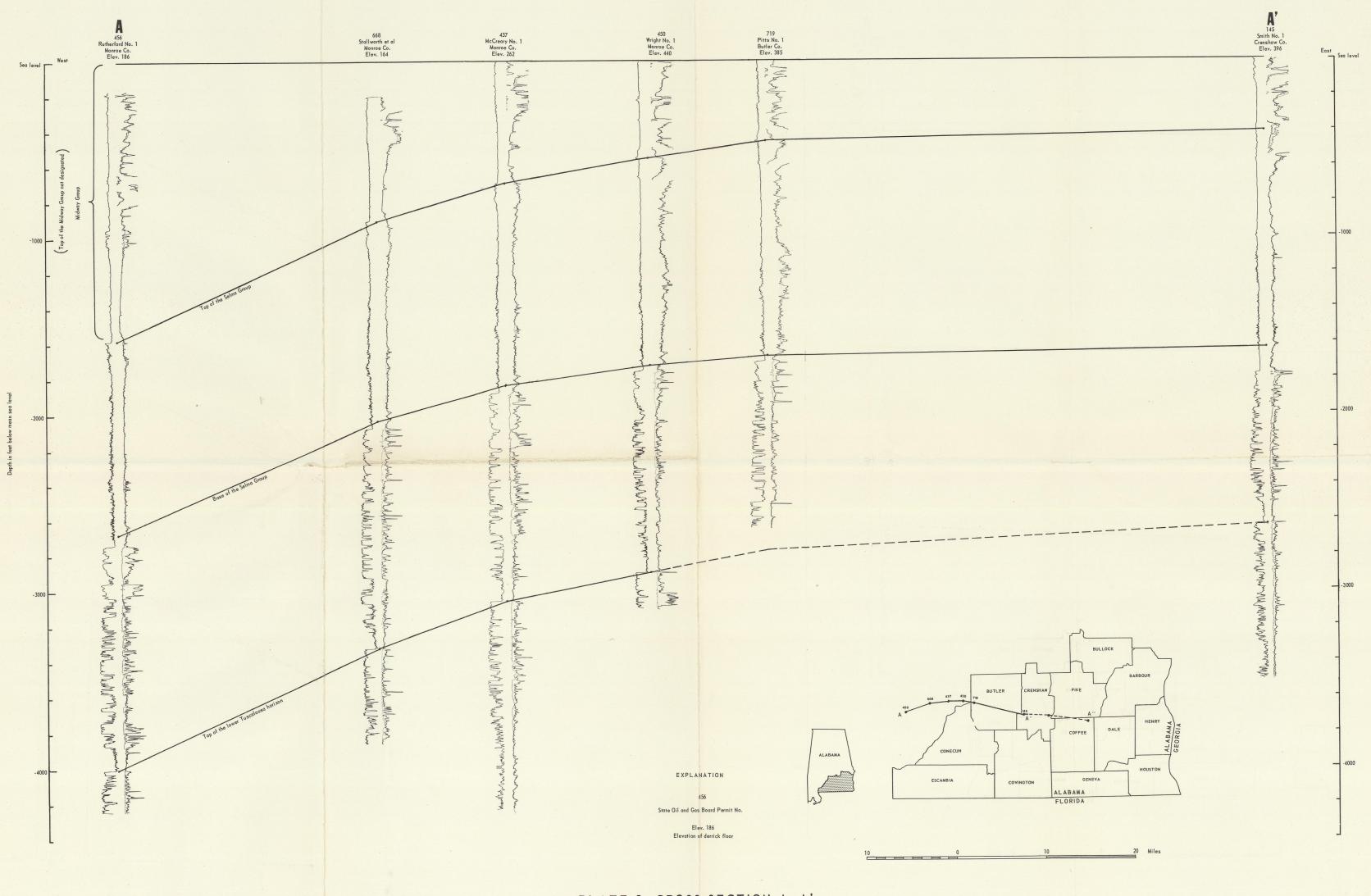



PLATE 2. CROSS SECTION A-A'

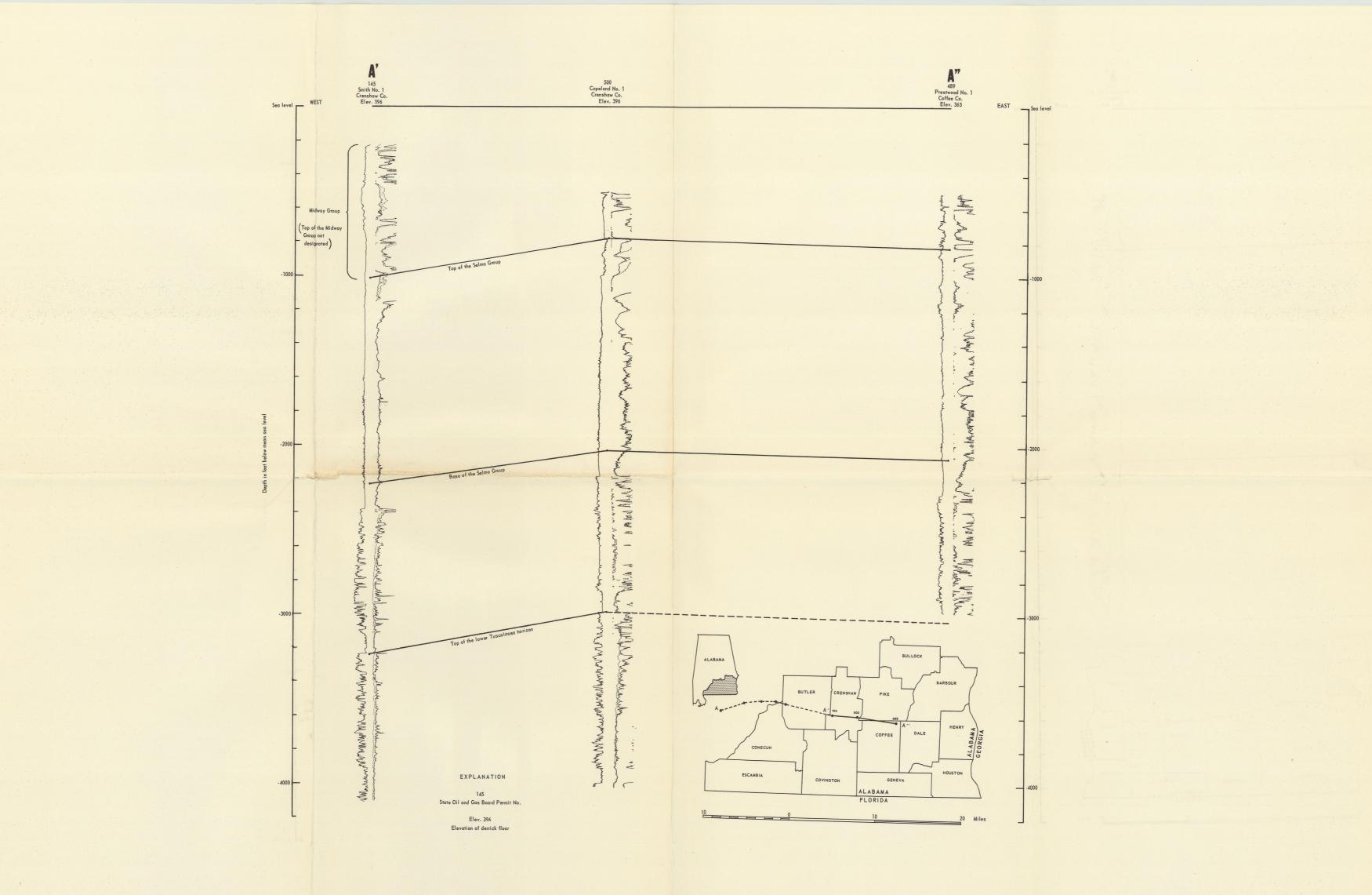
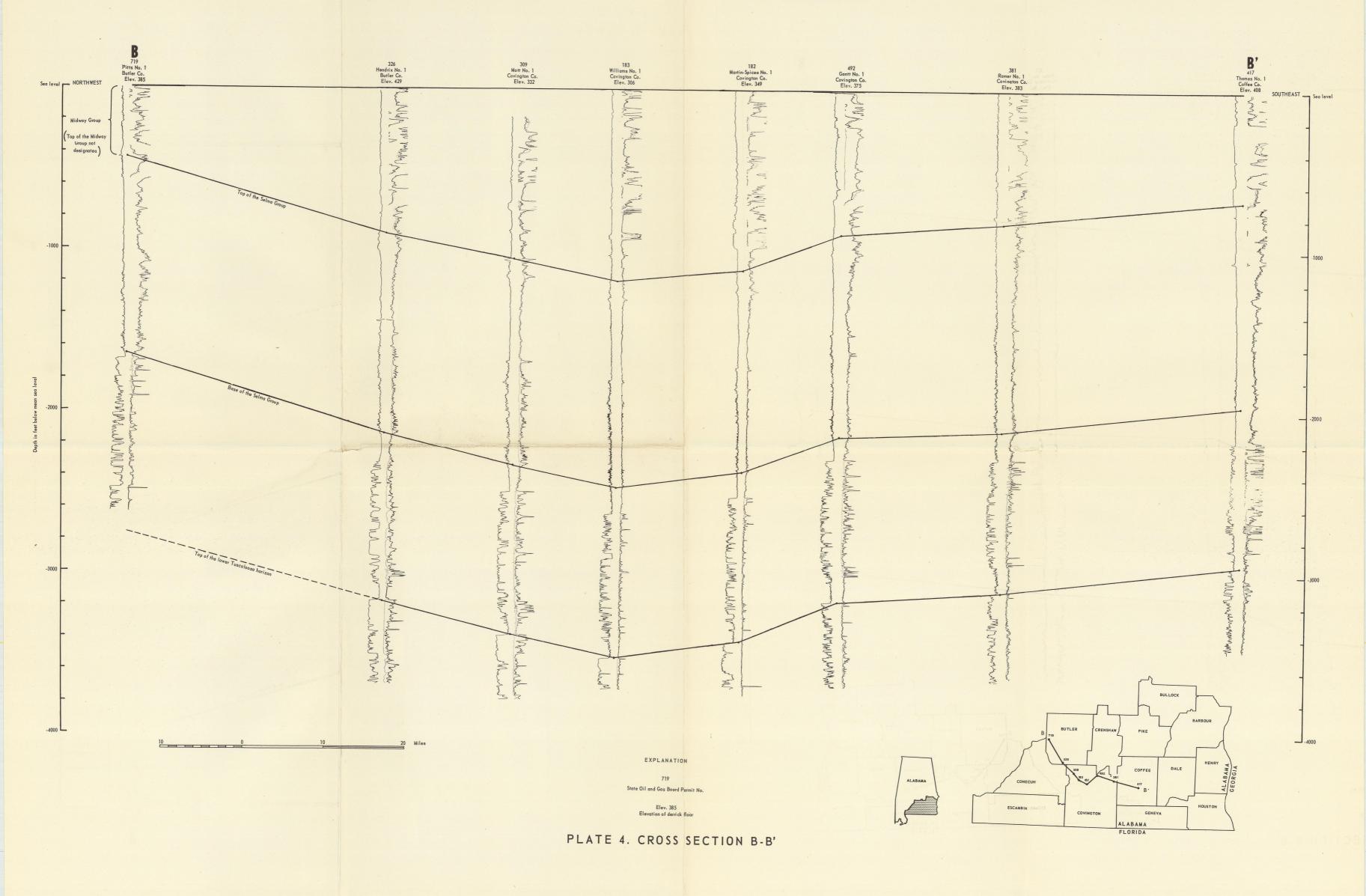
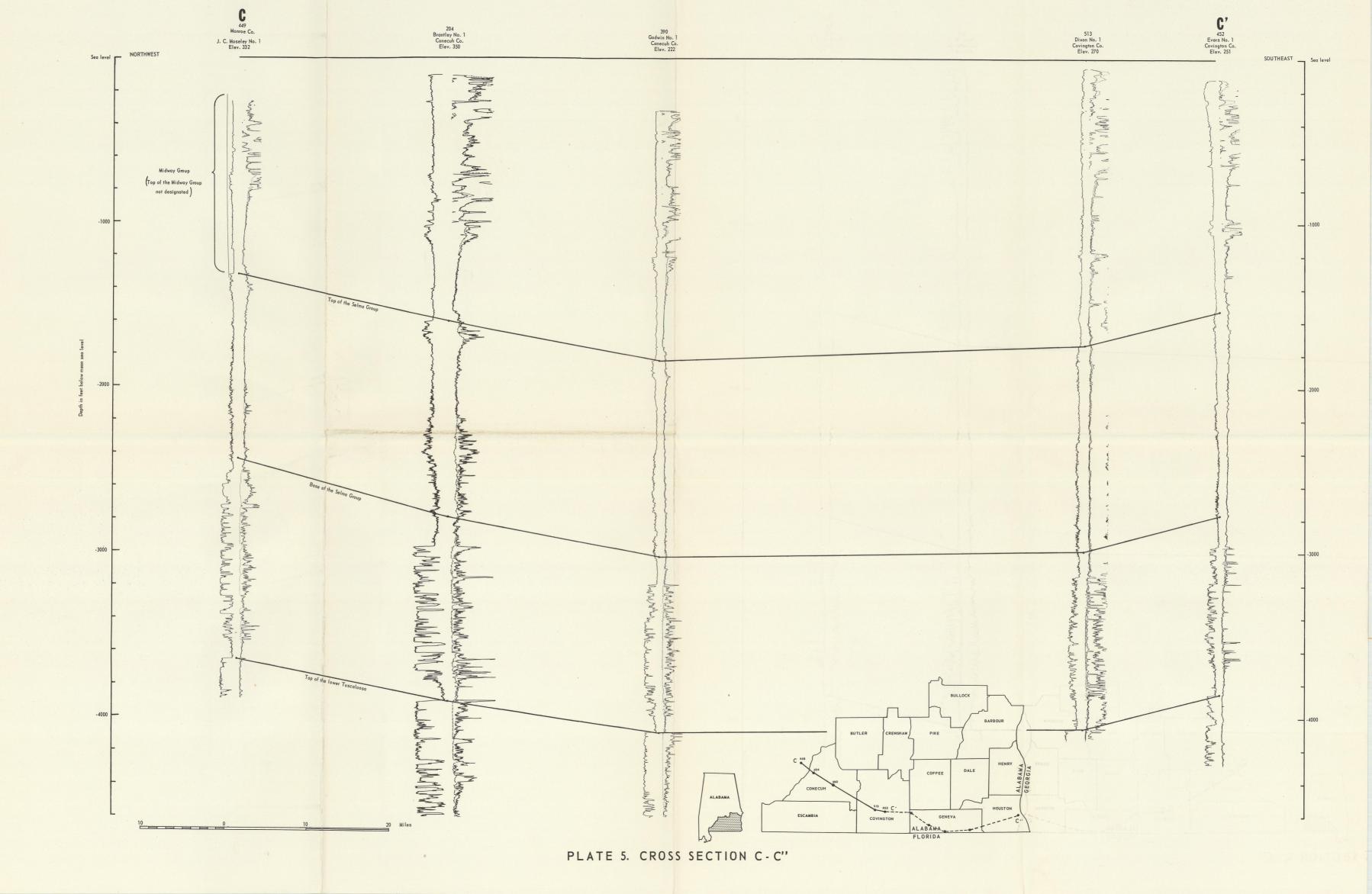





PLATE 3. CROSS SECTION A'-A''





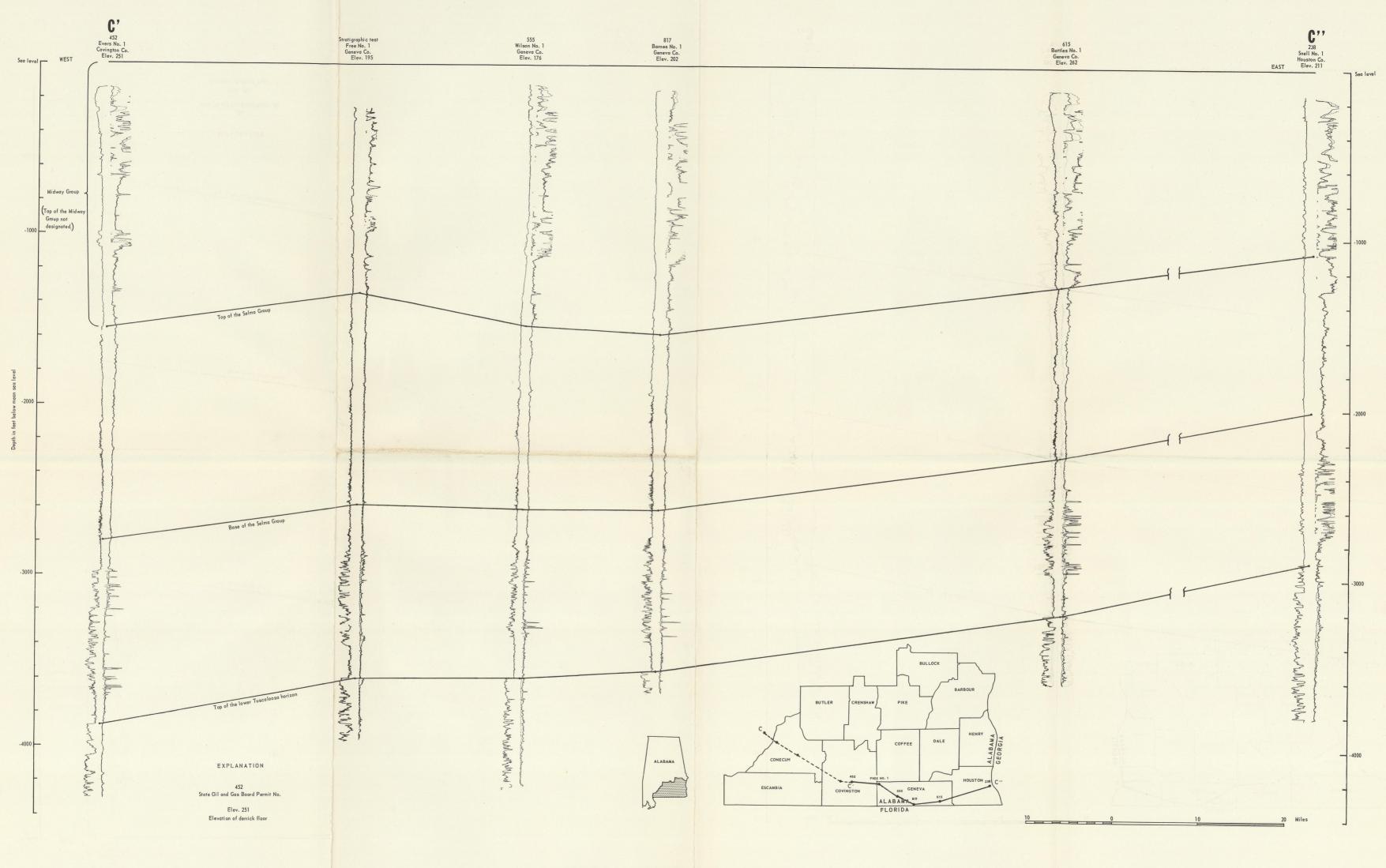
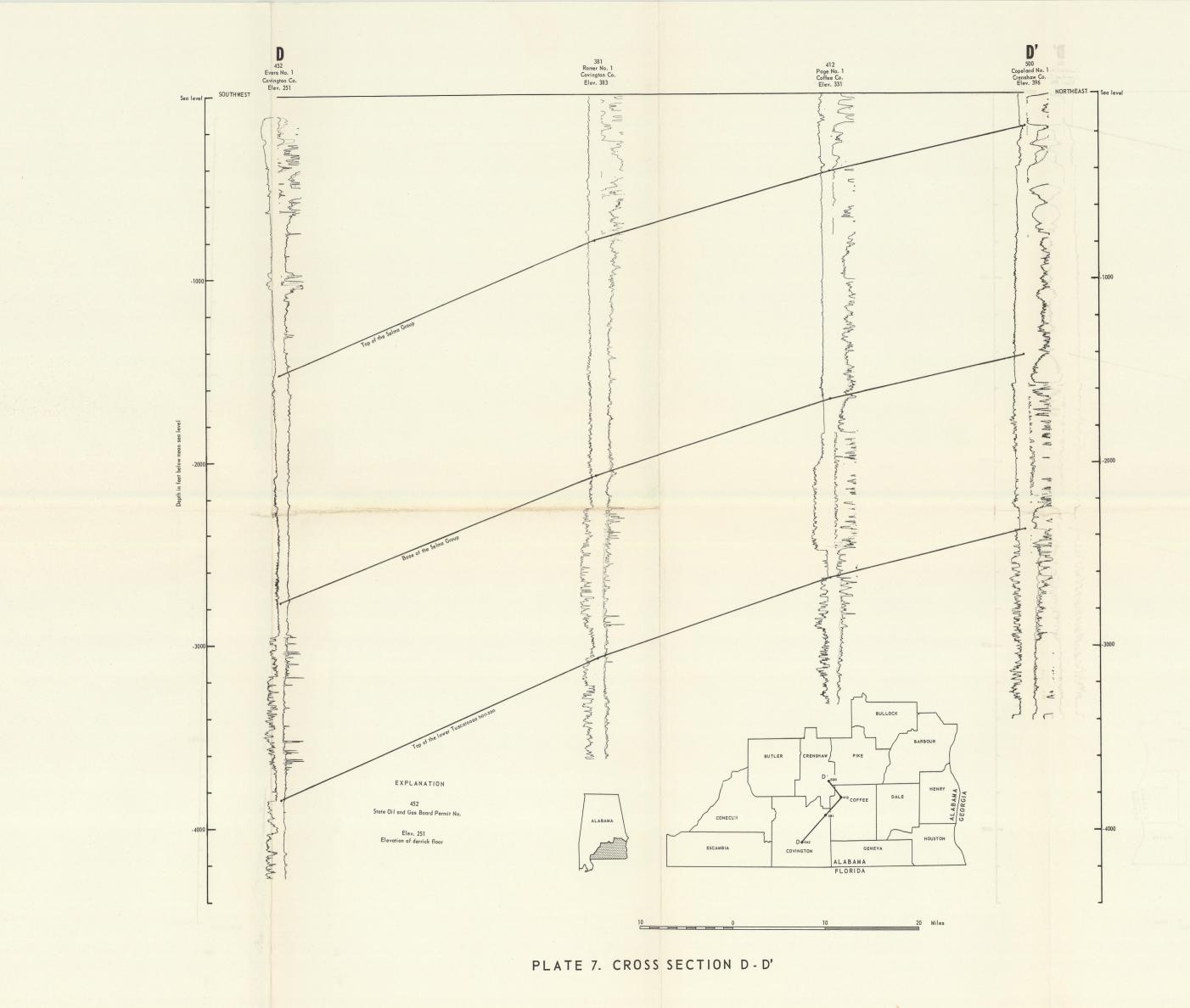
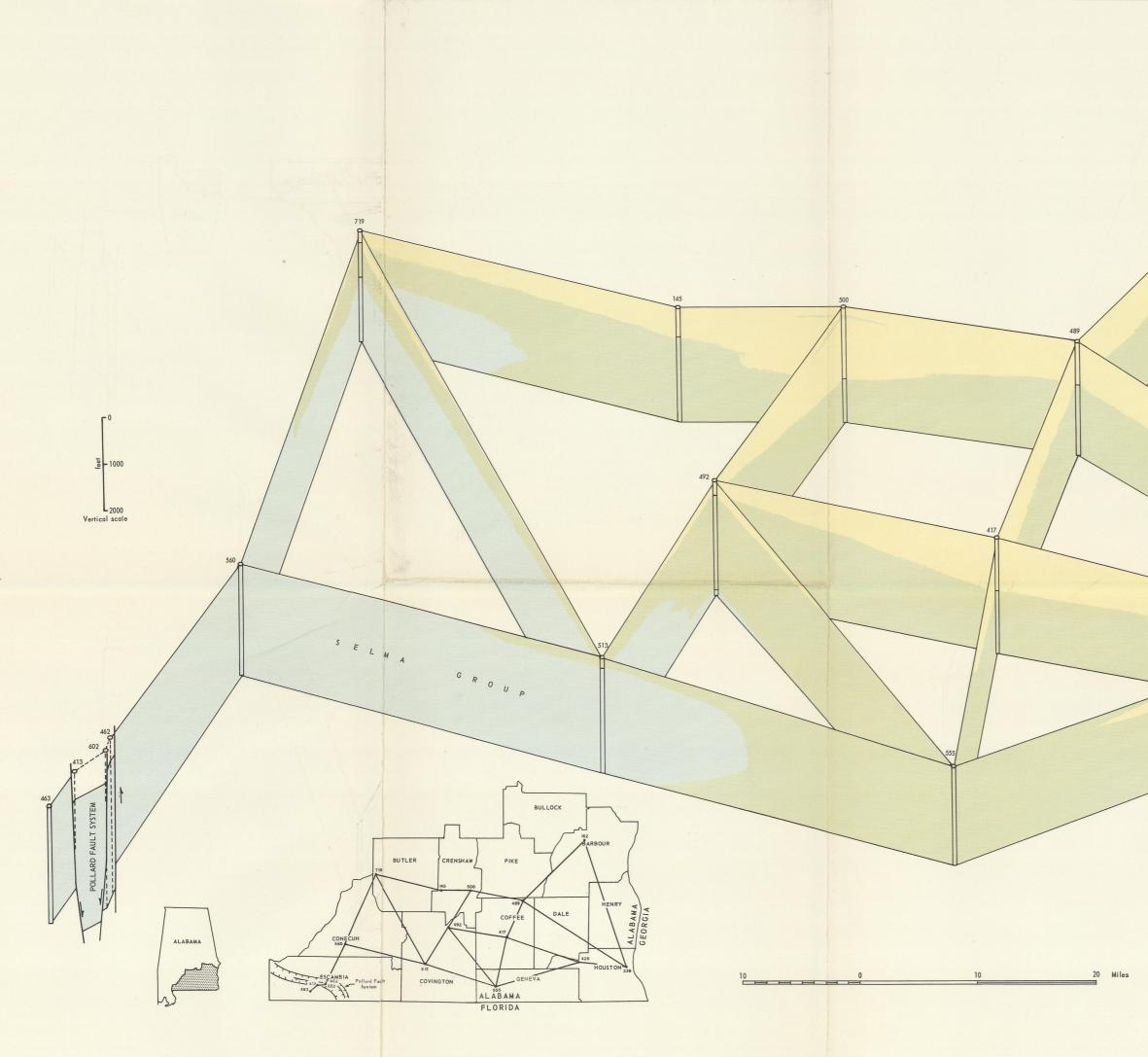
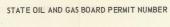





PLATE 6. CROSS SECTION C'-C"




(SELMA GROUP)

# PLATE 8. GENERALIZED SUBSURFACE FACIES CHANGES IN SOUTHEAST ALABAMA



EXPLANATION

555







SHALE May range from a chalky shale to a silty non-calc s shale

