A Reconnaissance

By Lawson V. Causey

GEOLOGICAL SURVEY OF ALABAMA

BULLETIN 81

FILE COPY

GEOLOGICAL SURVEY OF ALABAMA

Philip E. LaMoreaux State Geologist

DIVISION OF WATER RESOURCES

Doyle B. Knowles Chief Hydraulic Engineer

BULLETIN 81

AVAILABILITY OF GROUND WATER IN TALLADEGA COUNTY, ALABAMA A Reconnaissance

By Lawson V. Causey

Prepared by the United States Geological Survey in cooperation with the Geological Survey of Alabama

UNIVERSITY, ALABAMA

1965

STATE OF ALABAMA

Honorable George C. Wallace, Governor

GEOLOGICAL SURVEY OF ALABAMA AND

OIL AND GAS BOARD OF ALABAMA

Philip E. LaMoreaux, State Geologist and Oil and Gas Supervisor Katherine Fraker, Secretary A. J. Harris, Attorney

OIL AND GAS BOARD OF ALABAMA

E. K. Hanby, Chairman Hugh L. Britton, Member C. D. Glaze, Member Philip E. LaMoreaux, Secretary

ADMINISTRATIVE SECTION

George W. Swindel, Jr. Administrative Geologist Virginia Q. Shanner, Accountant Clarice S. Booth, Secretary Adma S. Howard, Librarian Dashiell P. McKay, Library Assistant Gene A. Clements, Laboratory Assistant Ida J. Cook, Receptionist

WATER RESOURCES DIVISION Doyle B. Knowles, Chief Hydraulic Engineer Luther W. Hyde, Geologist Julia M. Leatherwood, Secretary Jimmy E. Pogue, Drafisman

OIL AND GAS DIVISION

H. Gene White, Chief Petroleum Engineer Boyd L. Bailey, Petroleum Geologist E. C. Herbert, Field Agent William E. Tucker, Field Agent Robert C. Wood, Field Agent Judith B. Williams, Secretary Monzula G. Sherry, Secretary Beverly Jo Nevil, Clerk

STRATIGRAPHY, PALEONTOLOGY, AND GEOPHYSICS DIVISION

Thomas J. Joiner, Chief Geologist Charles W. Copeland, Jr., Geologist Robert C. MacElvain, Petroleum Specialist Donald B. Moore, Geologist Philip C. Reed, Geologist Richebourg G. McWilliams, Geologist James D. Turner, Geologist "Charles W. Drennen, Geologist Kathryn C. Jones, Secretary

ECONOMIC GEOLOGY DIVISION

Thomas A. Simpson, Chief Geologist T. W. Daniel, Jr., Geologist William E. Smith, Geologist Otis M. Clarke, Jr., Geologist Michael W. Szabo, Geologist Thomton L. Neathery, Geologist Merla W. Elliott, Secretary SPECIAL CONSULTANTS *Wealter B. Jones, State Geologist Emeritus *Roland M. Harper, Geographer *Winnie McGlamery, Paleontologist Emeritus

COOPERATIVE STUDIES WITH UNITED STATES GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

William L. Broadhurst, District Chief
William J. Powell, Geologist
Charles F. Hains, Hydraulic Engineer
James R. Avrett, Chemist
Lawson V. Causey, Geologist
Robert J. Faust, Geologist
John G. Newton, Geologist
John G. Newton, Geologist
John C. Scott, Geologist
John C. Scott, Geologist
John C. Scott, Geologist
John D. Toulmin, Jr., Geologist
Kenneth D. Wahl, Geologist
James W. Board, Hydraulic Engineer
Harkins, Hydraulic Engineer
Patrick O. Jefferson, Hydraulic Engineer
Patrick O. Jefferson, Hydraulic Engineer
Charles O. Ming, Hydraulic Engineer
Samuel C. Moore, Hydraulic Engineer

James F. Patterson, Mathematician Edwin B. Thurston, Cartographic Compilation Aid Thomas R. Caples, Engineering Aid Ruben E. Pate, Jr., Hydraulic Engineering Technician Tommy R. Duvall, Hydraulic Engineering Technician Tranklin D. King, Hydraulic Engineering Technician Franklin D. King, Hydraulic Engineering Technician Clifford L. Marshall, Hydraulic Engineering Technician George H. Nelson, Jr., Hydraulic Engineering Technician David M. O'Rear, Hydraulic Engineering Technician David M. O'Rear, Hydraulic Engineering Technician Fletcher C. Sedberry, Hydraulic Engineering Technician Wikey F. Harris, Jr., Physical Science Technician Wikey F. Harris, Jr., Physical Science Technician Wikey F. Harris, Jr., Physical Science Technician Ham J. Neberts, Administrative Clerk Bernice L. McCraw, Editorial Clerk Lamona W. Page, Clerk-Dictating Machine Transcriber Reba S. McHenry, Clerk-Typist

COOPERATIVE STUDIES WITH UNITED STATES BUREAU OF MINES

TUSCALOOSA METALLURGY RESEARCH CENTER Frank J. Cservenyak, Research Director NORRIS METALLURGY RESEARCH LABORATORY Norman A. Pace, Chief AREA II MINERAL RESOURCE OFFICE Donald O. Kennedy, Area Director James F. O'Neill, Mining Engineer

COOPERATIVE RESEARCH ACTIVITIES WITH UNIVERSITIES AND COLLEGES: University of Alabama, Birmingham Southern College, Florida State University, University of Illinois, Louisiana State University, and Old Dominion College.

University, Alabama September 8, 1965

Honorable George C. Wallace Governor of Alabama Montgomery, Alabama

Dear Governor Wallace:

I have the honor of transmitting the report "Availability of Ground Water in Talladega County, Alabama, a Reconnaissance," by Lawson V. Causey, which has been printed as Bulletin 81 of the Geological Survey of Alabama.

The report points out that dolomite, marble, and limestone are the most productive water-bearing beds underlying the county. Wells penetrating solutionally enlarged openings in these rocks produce as much as 1,600 gallons per minute. Areas in Talladega County that are potentially favorable for the development of large-capacity wells are shown on a map in the report. An important factor in the economic development of Talladega County will be the abundance of ground water of good chemical quality in many parts of the county.

Respectfully, helip .

Philip E. LaMoreaux

CONTENTS

n	-	~	~
r	а	ĸ	e

Introduction 1 Area of study 2 Purpose of study 2 Geography 2 Climate 2 Previous investigations 2 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Area of study 2 Purpose of study 2 Geography 2 Climate 2 Previous investigations 4 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Purpose of study 2 Geography 2 Climate 2 Previous investigations 4 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Geography 2 Climate 4 Previous investigations 4 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Climate 4 Previous investigations 4 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Previous investigations 4 Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Well- and spring-numbering system 4 Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Acknowledgments 5 General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
General geology 5 Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Water-bearing properties of the rocks 7 Dolomite 7 Limestone 8
Dolomite
Limestone
Shale
Chert 10
Marble
Sandstone
Quartzite
Phyllite and slate
Schist
Ground water
Source
Occurrence
Water-level fluctuations
Recovery of ground water
Drilled wells
Dug wells
Springs
Use of ground water
Ouality of water
Summary
Selected references
Basic data

ILLUSTRATIONS

(Plates in pocket)

- Plate 1. Geologic rock-type map of Talladega County, Ala.
 - 2. Availability of ground water and location of wells and springs in Talladega County, Ala.

CONTENTS

Figure	1.	Area studied and areas of other ground-water	
		studies in Alabama	3
	2.	Well- and spring-numbering system used in this	
		report	6
	3.	Changes in water level in well AA-19 and precipi-	
		tation at Sylacauga	17
	4.	Median chloride, hardness, and bicarbonate content	
		of water from wells and springs in Talladega	
		County	24

۳,

.

TABLES

Table 1. Discharges from selected springs in Talladega	
County	19
2. Some minerals found in water and their significance	. 22
3. Partial chemical analyses of water from wells and	
springs in Talladega County	28
4. Comprehensive chemical analyses of water from wells	1
and springs in Talladega County	
5. Records of wells and springs in Talladega County	35
6. Drillers' logs of wells in Talladega County	

A Reconnaissance

By Lawson V. Causey

ABSTRACT

Talladega County, in east-central Alabama, has an area of 750 square miles. The rocks that crop out in the county range in age from Precambrian to post-Carboniferous and consist chiefly of dolomite, limestone, shale, quartzite, marble, phyllite, and slate.

Most of the wells and springs yield water from the dolomite, the limestone, the marble, and the phyllite and slate. However, the most productive aquifers are the dolomite and the marble. The dolomite yields as much as 1,600 gpm (gallons per minute) of water to wells and as much as 4,800 gpm to springs. The marble yields as much as 900 gpm to wells and as much as 1,000 gpm to springs.

Springs in the county discharge more than 50 and probably as much as 100 million gallons of water per day.

Ground water of good quality from wells and springs is the source of most municipal, industrial, and rural supplies. The estimated daily average use in Talladega County in 1962 was $7\frac{1}{2}$ million gallons.

INTRODUCTION

Ground water is the principal source of municipal, industrial, and rural water supplies in Talladega County. The use of ground water is increasing, owing principally to an increase in population, industrial expansion, and modernization of rural homes. Most municipalities in the county have had to supplement their water supplies during the past 10 years. The quantity of water available from surface sources for Sylacauga became inadequate in 1950 because of increased demands on the system concurrent with several years of drought. A detailed study of the geology and ground-water resources of the Sylacauga area, begun in 1954 by the U.S. Geological Survey in cooperation with the Geological Survey of Alabama and the city of Sylacauga, revealed areas where large yields could be developed from wells tapping solution openings in the marble.

AREA OF STUDY

Talladega County, consisting of 750 square miles in eastcentral Alabama, is east of Shelby County and Birmingham. Its population has increased from 45,241 in 1930 to 65,495 in 1960. The principal municipalities of the county are Talladega, Sylacauga, Childersburg, Lincoln, Bon Air, and Munford. The area studied and areas of other ground-water studies in Alabama are shown in figure 1.

PURPOSE OF STUDY

As cities and towns in Talladega County grow and industries expand, where will they get more water? The purpose of this report is to provide general information on the availability of ground water by which to evaluate such a resource for meeting future water needs.

The study of the ground-water resources of Talladega County was begun in July 1962 by the U.S. Geological Survey in cooperation with the Geological Survey of Alabama. The investigation was made under the direct supervision of W. J. Powell, district geologist in charge of ground-water investigations in Alabama.

GEOGRAPHY

Talladega County lies almost entirely in the Valley and Ridge physiographic province of the Appalachian Highlands. A small area along the east edge of the county is in the Piedmont province (U.S. Geol. Survey, 1946). The topography is rolling to hilly in the westem part, composed of valleys and ridges that trend northeastward in the central part, and mountainous in the eastern part.

The county is drained by the Coosa River and its tributaries. The Coosa River flows southwestward along the west edge of the county and forms the boundary between Talladega County and parts of St. Clair and Shelby Counties. Tributaries of the Coosa River drain westward and consist chiefly of Blue Eye, Choccolocco, Clear, Talladega, Tallaseehatchee, Kahatchee, and Cedar Creeks and their tributaries.

Figure 1.-Area studied and areas of other ground-water studies in Alabama.

0.0

CLIMATE

The climate of Talladega County is mild, characterized by high rainfall, high humidity (except during autumn), and temperatures that are moderately high during summer. The average annual precipitation, determined from 73 years of record at the U.S. Weather Bureau Station at Talladega, is 51.48 inches, and the mean annual temperature, determined from 72 years of record, is 63.6°F.

PREVIOUS INVESTIGATIONS

Two reports have been published by the Geological Survey of Alabama that contain sections on ground water in Talladega County. W. D. Johnston of the U.S. Geological Survey made a study in 1928-29 of the ground water in parts of northern Alabama. The results of that study were published in 1933 in Special Report 16, "Ground Water in the Paleozoic Rocks of Northern Alabama." A section of the report discusses the availability and quality of ground water from rocks in Talladega County. In 1951 the U.S. Geological Survey began a reconnaissance of the ground water in the crystalline rocks of Alabama, which included the eastern and southern parts of Talladega County. The results of that study were published in 1957 in Special Report 23, "Geology and Ground Water in the Piedmont Area of Alabama." This report discusses the availability and quality of the ground water and factors to be considered in selecting well sites.

Two comprehensive reports with sections describing the geology of Talladega County have been published by the Geological Survey of Alabama. They are Special Report 9, "The Valley Regions of Alabama, Part II, On the Coosa Valley Region," by Henry McCalley, and Special Report 14, "Geology of Alabama," by G. I. Adams, Charles Butts, L. W. Stephenson, and C. Wythe Cooke.

WELL- AND SPRING-NUMBERING SYSTEM

The well- and spring-numbering system used in Talladega County is based on the Federal land classification. Each township is divided into 36 sections which are numbered consecutively starting with 1 in the northeast corner of the township and ending

4

INTRODUCTION

with 36 in the southeast corner. In Talladega County each township also has been assigned a letter, beginning with "A" in the northemmost township and continuing through "Z" and from "AA" through "HH" in the southernmost township. Wells and springs within a township are numbered consecutively, and each number is prefixed by the letter identifying the township; for example, H-1, H-2, H-3 (fig. 2; table 5).

ACKNOWLEDGMENTS

Many water-well contractors, industries, municipalities, and individuals contributed to the basic data essential to this report. Special appreciation is given to Mr. George W. Swindel, Jr., administrative geologist with the Geological Survey of Alabama and formerly with the U.S. Geological Survey, for reviewing the basic data he had collected as a part of the detailed study of the Sylacauga area.

GENERAL GEOLOGY

Rocks in Talladega County, ranging in age from Precambrian to post-Carboniferous, have been sharply folded into northeastwardtrending synclines and anticlines. Metamorphic rocks in the eastern and southern parts of the county have been thrust northwestward and overlie rocks of Cambrian, Ordovician, and Mississippian age. The principal overthrust between metamorphic and sedimentary rocks extends across the county from northeast to southwest. The Talladega Slate, which includes the Sylacauga Marble and the Cheaha Sandstone Members, crops out east of this overthrust. Along parts of the east edge of the county there is a narrow band of Hillabee Chlorite Schist and a small area of the Ashland Mica Schist. West of the overthrust is the exposed section of sedimentary rocks which includes formations of Cambrian to Mississippian age. These formations, from oldest to youngest, are the Weisner Formation, Shady Dolomite, and Rome and Conasauga Formations of Cambrian age; the Ketona(?), Copper Ridge, and Chepultepec Dolomites of Cambrian and Ordovician age; the Longview and Newala Limestones, the Athens Shale, and the Little Oak Limestone of Ordovician age; the Frog Mountain Sandstone of Devonian

Figure 2.-Well- and spring-numbering system used in this report.

6

GENERAL GEOLOGY

age; and the Fort Payne Chert and Floyd Shale of Mississippian age. Geologic formations in Talladega County are composed of dolomite, limestone, shale, chert, marble, sandstone, quartzite, phyllite, slate, and schist. In this report the rocks are grouped into nine units, and their distribution is shown on plate 1.

WATER-BEARING PROPERTIES OF THE ROCKS

DOLOMITE

DISTRIBUTION

Dolomite as described in this report includes the Shady, Ketona(?), Copper Ridge, and Chepultepec Dolomites; the Ketona may be present in parts of the county. Dolomite underlies about half the total area of the county—several long northeastward-trending belts which extend almost the entire length of the county and in many areas are interconnected. Several smaller outcrops are in the southwestern part of the county (pl. 1).

ROCK CHARACTER

In some areas the bedrock is overlain by a dark-red clayey residue and fertile soil; but, more commonly, a gray cherty unproductive soil has developed. The chert forms as a chemical precipitate during the early stages of weathering of the bedrock, and after complete weathering the chert breaks up into smaller pieces that cover most of the ground surface underlain by the dolomite. In places where the chert is over 20 feet thick, it is mined for road metal. The bedrock is composed of light- to dark-gray dolomite and thin layers of limestone.

WATER-BEARING PROPERTIES

About 65 percent of the wells and springs inventoried during the investigation yield water from openings in the dolomite and the overlying weathered chert zone. Wells obtaining water from the weathered zone have smaller yields than those developed in solution openings in the bedrock. Most industrial and municipal wells yield 200 to 450 gpm (gallons per minute) of water from the dolomite; however, well M-9 at Talladega yielded as much as 1,600 gpm during testing.

Flows from springs that discharge from the dolomite range from about 200 to 4,800 gpm. Spring H-4, the largest in the county, had a measured discharge of 4,800 gpm on April 2, 1963. This spring, however, will be covered by backwater from the Coosa River after completion of the dam north of Childersburg.

Wells or springs in the dolomite are a source of water supply for the communities of Bon Air, Lincoln, Sycamore, and Talladega. Industrial supplies in the vicinity of Talladega and a few in Sylacauga also are obtained from wells and springs in dolomite.

The quality of water from the dolomite is generally good, but locally may have a high iron content and be hard. Water from well G-12 has 0.89 ppm (part per million) iron. Hardness, based on 167 analyses (tables 3 and 4), ranges from 5 to 510 ppm and has a median of 122 ppm.

Areas underlain by dolomite are potentially favorable for the development of wells of large capacity (pl. 2).

LIMESTONE

DISTRIBUTION

Limestone as used in this report corresponds to the area mapped as the Conasauga Formation, the Longview and Newala Limestones, the Athens Shale, and the Little Oak Limestone on the geologic map of Alabama (1926). The limestone generally occurs in narrow northeastward-trending belts in the northern, central, and southwestern parts of the county (pl. 1).

ROCK CHARACTER

The Conasauga is about 500 feet thick in Talladega County and is poorly exposed. The formation consists of limestone, dolomitic limestone, dolomite, and minor amounts of shale. The limestone and dolomite are generally light to medium gray, but are much darker where interbedded with the shale.

The Longview, Newala, and Little Oak Limestones consist of gray limestone and minor amounts of chert. The Athens Shale is included with the limestone unit because its outcrop is too narrow to show separately on the map (pl. 1). The Athens consists of black fissile shale interbedded with layers of dark-gray to black limestone.

WATER-BEARING PROPERTIES

Most drilled wells tapping the limestone yield sufficient water for a domestic and stock supply. Wells D-3 and G-2 furnish sufficient water for two small schools. In lowland areas, drilled wells tapping solution openings in the limestone may yield as much as 100 gpm. Flows from springs in the limestone range from less than 1 gpm to as much as 1,100 gpm.

Water from the limestone, based on 20 analyses (tables 3 and 4), ranges in hardness from 99 to 310 ppm and has a median of 147 ppm.

SHALE

DISTRIBUTION

Shale as used in this report includes the Rome Formation and the Floyd Shale, shown as a single unit on plate 1. Outcrops of the Rome form narrow belts in the north-central and northeastern parts of the county. Outcrops of the Floyd form oval belts in the northwestern and southwestern parts of the county.

ROCK CHARACTER

The Rome in Talladega County is composed of an undetermined thickness of red shale and siltstone, green shale, and red, tan, and light-gray sandstone.

The Floyd is about 2,000 feet thick in the northwestern part of the county and about 1,200 feet thick in the southwestern part. It consists of black to greenish-black thin-bedded to fissile shale interbedded with gray to greenish-gray fine-grained thin- to mediumbedded sandstone, which is lenticular in places. A medium- to dark-gray lenticular clayey limestone is interbedded in some places.

WATER-BEARING PROPERTIES

Ground water in the shale occurs in small openings along bedding planes, fracture or joint systems. These openings are generally not interconnected, and ground-water supplies developed from them are small though adequate for domestic use. These water-bearing openings are generally penetrated at a depth of 225 feet below the land surface. Wells W-2 and W-3 at Winterboro High School are reported to obtain water from the shale, and pumpage from each well is estimated at 20 gpm.

Water from the shale in the northwestern and southwestern parts of the county is more mineralized than water from the shale in the central part. Water from well C-1 in the northwestern part of the county contained 1.1 ppm iron, 266 ppm sulfate, and 783 ppm dissolved solids on March 25, 1963. These constituents exceed the limits recommended for a domestic supply. Water from the shale, according to the results of 15 analyses (tables 3 and 4), ranges in hardness from 8 to 598 ppm and has a median of 121 ppm.

CHERT

DISTRIBUTION

The chert as used in this report corresponds to the area mapped as Fort Payne Chert on the geologic map of Alabama (1926). Chert crops out in several short and narrow belts in the northwestern and southwestern parts of Talladega County (pl. 1).

ROCK CHARACTER

The Fort Payne Chert is less than 100 feet thick in Talladega County. Exposures consist almost entirely of light-tan and lightgray chert that is broken by fractures and joints. The Fort Payne is highly fossiliferous and crinoid stem plates are abundant.

WATER-BEARING PROPERTIES

Wells and springs are not known to yield water from the chert in Talladega County. The Fort Payne Chert is a good aquifer in most parts of Alabama, but its potential as an aquifer in Talladega County has not been determined.

MARBLE

DISTRIBUTION

Marble as used in this report is the Sylacauga Marble Member of the Talladega Slate. Marble crops out in Talladega County in a northeastward-trending belt that begins at the county line southwest of Sylacauga and extends through Sylacauga to 1 mile southeast of Sycamore (pl. 1), and about 2 miles north of Sycamore for a total distance of 14 miles in a northeasterly direction.

ROCK CHARACTER

The marble is a fine-grained white or cream-tinted translucent rock clouded with green in places by thin layers of green phyllite. The marble is overlain and underlain by phyllite.

WATER-BEARING PROPERTIES

Ground water in the marble occurs in openings along joints and bedding planes. Many of these openings have become enlarged through the solvent and abrasive action of moving ground water to form extensive conduits for the movement of large quantities of water. Large quantities of ground water in the Sylacauga area are obtained from wells penetrating such solution openings in the marble. Well AA-22 penetrated solution openings at depths of 160, 221, and 332 feet, and yielded 900 gpm during testing in 1954. Well BB-24 had a drawdown of 12 feet after pumping 3 months at 700 gpm in 1955. The results of test drilling and pump testing done in 1955, as a part of a detailed investigation, indicate that the size and extent of solution cavities in the marble are variable. The thickness of the cavities ranged from less than 1 foot to more than 14 feet and the quantity of water available to wells tapping these cavities ranged from less than 10 gpm to more than 900 gpm. Therefore, test drilling is necessary in locating areas underlain by fractures and solution cavities, and testing by pumping is necessary to determine the quantity of water available. The study also revealed that most of the fractures and solution cavities in the marble occur above a depth of 300 feet.

Spring AA-16 had a measured discharge of 1,000 gpm on June 25, 1955, from an opening in the marble. Spring GG-1 discharges about 150 gpm of water and is the source of supply for 50 families at Gantts Quarry.

The chemical quality of water from the marble is good except for the hardness. The hardness of water, based on 11 analyses (tables 3 and 4), ranges from 52 to 171 ppm and has a median of 144 ppm.

SANDSTONE

DISTRIBUTION

Sandstone as used in this report corresponds to the area mapped as Frog Mountain Sandstone on the geologic map of Alabama (1926). The sandstone forms narrow belts in the northwestern and southwestern parts of the county (pl. 1).

ROCK CHARACTER

The Frog Mountain is about 20 feet thick in the southwestern part of the county and probably less than 50 feet thick in the northwestern part. The formation is composed of tan coarse-grained thick-bedded hard sandstone.

WATER-BEARING PROPERTIES

The sandstone is not a source of water for any known wells or springs in Talladega County.

QUARTZITE

DISTRIBUTION

The areas shown as quartzite on plate 1 of this report include the Cheaha Sandstone Member of the Talladega Slate and the Weisner Formation. Quartzite crops out in Talladega County in a northeastward-trending belt in the central part of the county, in a narrow belt in the east-central part, and in three small areas in the southwesterm part.

ROCK CHARACTER

The Cheaha is composed of quartz conglomerate in the lower part and thin-bedded soft sandstone, interbedded in places with layers of purple phyllite, in the upper part. The Weisner is composed of shale, siltstone, quartzite, sandstone, and conglomerate. Although not as conspicuous as the quartzite and conglomerate, the shale and siltstone beds are the principal lithologic units composing the formation.

WATER-BEARING PROPERTIES

Ground water in the quartzite occurs in openings along fractures. Adequate supplies are generally available from drilled wells for domestic and farm use. Water from well M-5 contains 0.87 ppm of iron and requires treatment. With the exception of iron, water from the quartzite is of suitable quality for many uses.

PHYLLITE AND SLATE

DISTRIBUTION

Phyllite and slate as used in this report include all the Talladega Slate except the Cheaha Sandstone and the Sylacauga Marble Member. Phyllite and slate crop out in a broad belt along the eastern and southern parts of the county and in several smaller areas north and west of Sylacauga (pl. 1).

ROCK CHARACTER

In this report, the Talladega Slate is composed chiefly of phyllite and slate. Minor constituents include conglomerate, sandstone, limestone, marble, dolomite, and chert. The phyllite and slate are medium to dark greenish-gray, but exposures weather tan to brown.

WATER-BEARING PROPERTIES

Most wells obtaining water from the phyllite and slate are in lowland areas. These wells yield adequate quantities of water for domestic supplies. Wells drilled on ridges and upland areas have

the smallest yields and some are an inadequate source for domestic supply during dry seasons. Drilled wells seldom yield more than 20 to 30 gpm. Water from the phyllite and slate, based on 32 analyses (tables 3 and 4), ranges in hardness from 4 to 224 ppm and has a median of 55 ppm.

SCHIST

DISTRIBUTION

Schist in this report includes the Hillabee Chlorite and the Ashland Mica Schists. They crop out in Talladega County in two small areas—one at Chandler Springs in the east-central part of the county and another in the extreme southeastern part (pl. 1).

ROCK CHARACTER

An outcrop of Hillabee Chlorite Schist at Chandler Springs consists of green coarse-grained massive chlorite schist. The rock contains abundant pyrite. The Ashland Mica Schist consists chiefly of garnetiferous biotite schist and quartz-muscovite schist.

WATER-BEARING PROPERTIES

Schist has a small areal extent in the county and is a source of water for only a few families and one school. Wells tapping water-bearing openings in the schist yield less than 10 gpm. The water is soft to very hard and often contains excessive amounts of iron.

GROUND WATER

SOURCE

How does water become ground water? It becomes ground water during a phase of the never-ending water cycle—a cycle in which water is carried from earth to atmosphere and back to earth. Heat from the sun causes water to evaporate from wet ground, from vegetation, from lakes and streams, and from the gulf. The water vapor rises into the atmosphere and is carried by winds from place to place. When the vapor cools sufficiently, it condenses and falls as precipitation. Part of the precipitation is carried away GROUND WATER

by surface streams, part is evaporated again, and part seeps downward into the soil to become subsurface water. Some of the water entering the soil is returned to the atmosphere by evaporation or transpiration, and the rest seeps downward and becomes ground water.

OCCURRENCE

Ground water occupies pores, fractures, and solution openings in rocks. The porosity or percentage of open space in soil and rocks determines the amount of water the material will hold. In unconsolidated sediments such as clay, sand, and gravel, water is contained in the original pore spaces between the grains. The porosity due to openings of this type is termed "primary porosity." In consolidated rocks, the primary porosity generally has been reduced by compaction and cementation and perhaps also by recrystallization during metamorphism. The storage of ground water in consolidated rocks (limestone, marble, etc.) depends on "secondary porosity"—porosity resulting from fractures and solution channels which have developed after deposition of the rock.

In the limestone, chert, and marble aquifers of Talladega County ground-water conditions vary greatly from one aquifer to another and from place to place. Some of these rocks store and transmit very little water and others are very good aquifers. Important factors controlling the occurrence of ground water in these rocks are the original texture and chemical composition of the rocks. These factors may in turn determine the extent to which solution passages have been developed.

Water derived from precipitation carries carbon dioxide in solution (carbonic acid); also, organic acids derived from decaying vegetation may be added to the water as it percolates through the soil. The slightly acidic water attacks and dissolves openings through which it percolates. Under favorable geologic and climatic conditions an extensive network of solution passages may develop along the secondary fissures, greatly increasing the porosity and permeability of the rocks.

In Talladega County the general movement of ground water is west and southwest.

WATER-LEVEL FLUCTUATIONS

Water-level fluctuations in wells and changes in discharge from springs are caused by variations in precipitation, pumping from wells and springs, changes in atmospheric pressure, earthquakes, earth and ocean tides, and loading of the land surface.

The principal cause of water-level fluctuations in Talladega County is seasonal or cyclic, related directly to precipitation. An example of this relationship is shown in figure 3. The lowest annual water level is in the fall during a period of low precipitation. The highest water level is in late winter or early spring during a period of high precipitation.

Water-level fluctuations indicate variations in ground-water storage, which is an important factor in the yield of a well. The potential yield from a well during a period of high water level is generally larger than during a period of low water level. Therefore, test pumping to determine the potential yield of a well should be done during the period of low water level to determine its minimum yield.

RECOVERY OF GROUND WATER

DRILLED WELLS

Ground-water data in this report were obtained chiefly from a study of 263 drilled wells, ranging in diameter from 4 to 14 inches and in depth from 28 to 1,360 feet. Most of these wells are 6 inches in diameter, and only about 20 percent of them are deeper than 200 feet. Casing is generally installed through the unconsolidated material and seated in bedrock, and the interval below the top of the bedrock is uncased. However, wells penetrating fractured or deeply weathered zones that are likely to cave are cased and finished with perforated casing. Drillers' logs of 15 wells are given in table 6.

The yields from drilled wells range from 2 to 1,600 gpm, and the lithologic units tapped by them are the bases for the interpretation of the availability of ground water (pl. 2).

Figure 3.-Changes in water level in well AA-19 and precipitation at Sylacauga.

DUG WELLS

Dug wells yield small quantities of ground water for domestic and stock supplies in rural parts of the county. The supply from some of these wells is inadequate during late summer and fall. However, in most areas drilled wells tapping deeper aquifers would yield sufficient water for domestic and stock supplies. Most dug wells are excavated in unconsolidated deposits to depths that range from 8 to 85 feet. These wells may or may not be lined (cased), depending on the character of material penetrated; however, unlined wells tend to cave and are more subject to pollution from surface seepage. Dug wells were numerous until about 1940. Since that time, many have been replaced by drilled wells to supply the increased needs for modern homes.

SPRINGS

Springs in Talladega County are numerous and they discharge more than 50 and probably as much as 100 million gallons of water daily. Twenty-eight selected springs were inventoried during the investigation. Twenty of these springs discharge from dolomite, three from limestone, and five from marble. The discharge of springs from dolomite ranges from 200 to 4,800 gpm and averages 1,140 gpm. Discharges of three springs from limestone are 0.5, 50, and 1,100 gpm, and discharges of two springs from marble are 150 and 1,000 gpm. Rushing Spring (H-4) is the largest known spring in the county and on April 2, 1963, had a measured discharge of 4,800 gpm. The discharge from most of the springs in Talladega County, method of determination, and date of determination are given in table 1. Two discharge determinations are given in table 1 for springs C-16, G-14, H-4, M-11, and W-1. Each spring had a larger discharge in April 1963 than in October 1928, reflecting the greater rainfall during late winter and spring.

USE OF GROUND WATER

Ground water is used for domestic, stock, school, industrial, and municipal purposes in Talladega County. Rural areas depend almost entirely on ground water as a source of water supply, and nearly all county schools obtain their water from wells. Wells and

GROUND WATER

Spring	Type of rock	Discharge (gpm)	Method of determination	Date
C-16	Dolomite	300	м	10-14-28
C-16	do.	550	M	4- 2-63
G-14	do.	2,500	М	10-18-28
G-14	do.	3,300	М	4- 3-63
H-4	do.	3,900	М	10-14-28
H-4	do.	4,800	Μ	4- 2-63
H-5	do.	1,400	M	4- 2-63
L-12	do.	800	Μ	4- 2-63
M-11	Limestone	100	M	10-18-28
M-11	do.	1,100	M	4- 3-63
N-6	Dolomite	400	E	9-18-62
R-2	do.	1,400	Μ	4- 3-63
V-7	do.	500	Ę	10-23-62
V-14	do.	2,200	Μ	4- 2-63
V-17	do.	200	Μ	4- 2-63
W-1	do.	155	M	10-20-28
W-1	do.	1,200	Μ	4- 3-63
W-17	do.	1,600	M	4- 2-63
AA-11	do.	350	R	
AA-12	do.	350	R	
AA-16	Marb1e	1,000	M	6-25-55
AA-21	Dolomite	350	R	
DD-1	Limestone	50	E	12-19-62
FF-1	Dolomite	500	M	4- 2-63
FF-6	do.	290	M	4- 2-63
FF-9	do.	300	E	1- 3-63
FF-10	Limestone	.5	E	1- 3-63
GG-1	Marble	150	М	10-22-28
GG-5	Dolomite	1,200	М	4- 2-63

Table 1.-Discharges from selected springs in Talladega County [Method of determination: M, measured; E, estimated; R, reported.]

springs are the principal source of water for most industries and municipalities in the county. Talladega and Sylacauga have both ground- and surface-water supplies. Talladega obtains most of its water from two wells, and supplemental water from Talladega Creek during periods of peak demand. Sylacauga obtains its water supply from Tallaseehatchee Creek, but during periods of drought supplemental water is obtained from a well in Sylacauga. Other municipalities that use water from wells and springs are Bon Air, Childersburg, Gantts Quarry, Lincoln, and Munford.

For the purpose of this report, a well or spring is considered adequate for an average domestic and stock supply if it yields more than 1,500 gallons per day; it is considered adequate for an average domestic supply if it yields more than 500 gallons per day. Supplies for schools are based on an estimated use of 15 gallons per person per day. Some schools use more water than others, of course, according to the shower, toilet, and lunchroom facilities. The estimated average use of ground water in Talladega County in 1962 is as follows:

	Use
Consumer	(gallons per day)
Rural homes	2,000,000
Rural schools	65,000
Industries	
Alabama Marble Co.	300,000
America Talc Co.	150,000
Avondale Mills	1,000,000
Coosa River Newsprint Co.	40,000
Foremost Ice Cream Co.	200,000
Marble City Ice Co.	100,000
Moretti-Harrah Marble Co.	300,000
Newbury Manufacturing Co.	150,000
Talladega Ice and Storage Co.	60,000
Wehadkee Yarn Mills, Dye Plant	240,000
Others	100,000
Municipalities	
Bon Air	30,000
Childersburg	500,000
Gantts Quarry	80,000
Lincoln	100,000
Munford	35,000
Sycamore	50,000
Talladega	2,000,000
Total use	7,500,000

QUALITY OF WATER

The mineral content of water changes in its cycle from the sea to the atmosphere, to the land, and back to the sea. Precipitation as it reaches the earth is low in mineral content, but carbon dioxide and other gases dissolved from the atmosphere and from the soil make it a good solvent for certain minerals in the rocks and soils over and through which it passes. The amount of minerals that will be dissolved depends on their resistance to chemical and physical attack, the length of time the minerals are in contact with the water, and the chemical composition and temperature of the water itself. Water returning to the sea from land is considerably more mineralized than when it fell to earth.

The chemical quality of water may limit its use. Many commercial and industrial users require water of a certain quality. Drinking and culinary water on interstate carriers is subject to standards established by the U.S. Public Health Service (1962). Water for municipal and domestic supplies should, insofar as possible, conform to these standards. Chemical constituents commonly found in natural waters are listed in table 2, with their source, effect, and limit established by the U.S. Health Service for drinking and culinary water on interstate carriers.

The results of partial chemical analyses of water from 216 wells and springs in Talladega County are in table 3. The results of comprehensive chemical analyses of water from 36 wells and springs are in table 4. These analyses indicate the following:

1. The quality of ground water in Talladega County is suitable for most uses; however, some aquifers yield mineralized water which may require treatment for some uses.

2. The iron content of water from 12 wells and springs ranges from 0.02 to 1.1 ppm (table 4). In the northern part of the county water from the shale, dolomite, and quartzite contains more than 0.3 ppm of iron.

3. The bicarbonate content of water ranges from 2 to 564 ppm (tables 3 and 4). The median bicarbonate content of water from the principal aquifers ranges from 66 ppm from the phyllite and slate to 163 ppm from limestone (fig. 4).

Constituent	Source or origin	Limit ¹ (parts per million)	Significance
Silica (SiO2)	Most abundant constituent in igneous rocks, resistant to solution.		Causes scale in boiler and deposits on turbine blades.
Iron (Fe)	One of the most abundant elements, readily precipitates as hydroxide.	0.3	Stains laundry and porcelain; imparts unpleasant taste.
Manganese (Mn)	Less abundant than iron, present in lower concentrations.	.05	Do.
Calcium (Ca)	Dissolved from most rocks, especially limestone and dolomite.	* * * *	Causes hardness, forms boiler scale; helps maintain good soil structure and permeability.
Magnesium (Mg)	Dissolved from rocks.		Contributes to hardness. Excess has a physiological effect on man.
Sodium (Na)	Dissolved from rocks, industrial waste.		Injurious to soils and crops, and to certain physiological conditions in man.
Potassium (K)	Abundant but not very soluble in rocks and soils.		Causes foaming in boilers.
Bicarbonate (HCO3) Carbonate (CO3)	Abundant and soluble from limestone and dolomite, and soils.		Causes foaming in boilers and embrittlement of boiler steel.
Sulfate (SO4)	Sedimentary rocks, mine water, and industrial waste.	250	Excess is cathartic; imparts bitter taste in combination with other ions.
Chloride (Cl)	Rocks, soils, industrial waste, sewage, brines, sea water.	250	Imparts salty taste in combination with sodium; increases corrosiveness.

	1 "			
	Fluoride (F)	Not very abundant, sparingly soluble, seldom found in industrial wastes except as spillage, some sewage.	0.6 to 1.7	Limit depends on the annual average of daily maximum air temperatures. Excess causes mottling of children's teeth; within limits, aids in prevent- ing tooth decay.
	Nitrate (NO3)	Rocks, soils, sewage, industrial waste, normal decomposition (plants and animals), bacteria, fertilizer.	45	Excess indicates pollution, causes methemoglobinemia in infants.
	Hardness	Alkaline earths, principally calcium and magnesium.		Causes excessive soap consumption, scale in pipes; interferes in industrial processes.
1				Classification of hardness:
				Soft water 0 to 60 ppm Moderately hard water 61 to 120 ppm Hard water 121 to 180 ppm Very hard water 181+ ppm
u				

¹ Limit recommended by the U.S. Health Service (1962) for drinking and culinary water on interstate carriers.

Figure 4.-Median chloride, hardness, and bicarbonate content of water from wells and springs in Talladega County.

24

QUALITY OF WATER

4. The chloride content of water ranges from 0 to 272 ppm (tables 3 and 4). Water from 90 percent of the wells and springs contains less than 10 ppm of chloride. The median chloride content of water from each aquifer is less than 5 ppm (fig. 4).

5. The fluoride content of water in Talladega County is low. Fluoride in water from 36 wells and springs ranges from 0.0 to 0.3 ppm (table 4).

6. The hardness of water ranges from 3 ppm from the quartzite to 598 ppm from the shale (tables 3 and 4). The median hardness of water from the principal aquifers ranges from 55 ppm from phyllite and slate to 147 ppm from limestone (fig. 4).

7. The concentration of sulfate and dissolved solids exceeds the recommended limits in water from well C-1, which contains 266 ppm sulfate and 783 ppm dissolved solids.

8. The median temperature of ground water in Talladega County is $62^{\circ}\,\mathrm{F}.$

SUMMARY

Water from wells and springs is the source of most municipal, industrial, rural domestic, and rural school supplies in Talladega County. Municipal supplies are adequate for present needs; however, nearly all municipalities have had to supplement their supply during the past 10 years. In areas where dug wells have failed to yield adequate water for domestic use, an adequate supply can generally be obtained from a drilled well tapping a deeper waterbearing rock.

Most of the wells and springs yield water from dolomite, limestone, marble, and phyllite and slate. The dolomite and the marble are the most productive aquifers. The dolomite yields as much as 1,600 gpm of water to wells and as much as 4,800 gpm to springs. The marble yields as much as 900 gpm of water to wells and as much as 1,000 gpm to springs. Large yields probably can be obtained from wells drilled in some parts of the undeveloped area underlain by dolomite.

The shale, sandstone, quartzite, phyllite and slate, and schist yield small quantities of water to wells. These yields generally

are adequate for a domestic supply but seldom do they exceed 20 to 30 gpm.

The estimated daily average use of ground water from wells and springs in 1962 was 7,500,000 gallons.

The quality of ground water from most wells and springs is suitable for many uses. The median hardness of water from the aquifers ranges from 55 ppm in phyllite and slate to 147 ppm in limestone. Water from a few wells developed in shale, dolomite, and quartzite contains excessive amounts of iron. The median temperature of ground water in Talladega County is 62° F.

SELECTED REFERENCES

- Adams, G. I., Butts, Charles, Stephenson, L. W., and Cooke, C. Wythe, 1926, Geology of Alabama: Alabama Geol. Survey Spec. Rept. 14, 312 p.
- Alabama State Department of Public Health, 1960, Public water supplies.
- Baker, Jack, 1957, Geology and ground water of the Piedmont area of Alabama, a reconnaissance report: Alabama Geol. Survey Spec. Rept. 23, 99 p.
- Causey, L. V., 1963, Geology and ground-water resources of St. Clair County, Alabama: Alabama Geol. Survey Bull. 73, 84 p.
- Johnston, W. D., Jr., 1933, Ground water in the Paleozoic rocks of northern Alabama: Alabama Geol. Survey Spec. Rept. 16, pt. 1, 414 p.; pt. 2, 48 well and spring tables.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia in infants: Natl. Research Council, Bull. Sanitary Eng. and Environment, App. D.
- McCalley, Henry, 1897, Report on the valley regions of Alabama (Paleozoic strata), pt. 2, On the Coosa Valley region: Alabama Geol. Survey Spec. Rept. 9, 862 p.

Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494, 71 p.

- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U.S. Geol. Survey Water-Supply Paper 1454, 301 p.
- Swindel, G. W., Jr., Williams, M. R., and Geurin, J. W., 1963, Water in Alabama: U.S. Geol. Survey Water-Supply Paper 1765, 89 p.
- U.S. Geological Survey, 1946, Physical divisions of the United States: Washington, U.S. Govt. Printing Office, map.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- Warman, J. C., and Causey, L. V., 1962, Geology and ground-water resources of Calhoun County, Alabama: Alabama Geol. Survey County Rept. 7, 77 p.

BASIC DATA

Table 3.-Partial chemical analyses of water from wells and springs in Talladega County

(Analyses by U.S. Geological Survey, Quality of Water Branch)
Well and spring numbers correspond with those in plate 2 and tables 4 and 5.
Water-bearing rock: dol, dolomite; ls, limestone; mb, marble; ps, phyllite and slate; qtz, quartzite; sc, schist; sh, shale.

						Hardness as CaCO1				
						Cal				
			1	Car-		cium,	Non-	Specific		
			Bicar-	bon-		mag-	car-	conduct-		
			bonate	ate	Chloride	ne-	bon-	ance		Tem-
well	Data of	water-	(HCO_3)	(CO_3)	(CI)	sium	ate	(micro-		per-
spring	collection	rock		Part	s per milli	on		25° C)	ъH	(⁰ F)
									P	
C-1	8-28-62	sh	343	0	34	520	239	AC 40 (C 4 - 4 -	8.0	+C+C+C
C-2	8-28-62	sh(?)	218	0	19	192	13	100040000	8.0	10 m (V)
C-3	8-28-62	sh	240	0	8.0	198	1	1 (* (*)(*)(*)	7.9	
C-4	8-28-62	dol	5	0	2.0	8	4	0.000	6.5	1010
C-5	8-28-62	do1	135	16	3.0	139	2	1000000000	8.4	22.2
C-6	8-30-62	do1	118	0	2.0	106	9	1975-012	8.0	1201
C-7	8-28-62	do1	162	0	6.0	126	0		7.7	
C-8	8-30-62	dol	170	0	4.0	155	16		8 2	
C-9	8-30-62	do1	156	0	4.0	130	2	5208.200	7.9	*(***
C-11	9-10-62	dol	134	0	3.0	110	0	10.100 (10.00)	7.8	* 1 = (*)
C-12	9- 6-62	do1	160	6	2.0	140	0	E-90000-047	8.6	A((0),0)
C-15	8-30-62	dol	126	0	3.0	108	5	6 16 18 (H H	7.5	1.103
C-16	8-27-62	do1	183	0	5.0	161	11	1.1.1.1.1.1	8.0	61
C-17	9- 6-62	do1	147	0	3.0	125	4	1.1	7.6	1.11.4
D-1	8-28-62	dol	130	0	2.0	106	0	0.000	8.1	(1,1,1)
D-2	8-28-62	dol	134	0	4 0	116	6	1.410.414	7.5	4 14 14 ⁻²
D-3	9- 6-62	1s	149	2	7.0	138	12	p.1/2/2/2/	8.4	192022
D-4	9-19-62	1s	163	0	3.0	139	5		7.5	101/12
E-1	9-24-62	do1	98	0	1.0	91	11		7.2	14.4
E-2	9-24-62	dol	142	0	2.0	116	0		8.1	
E-3	9-24-62	dol	153	0	1.0	125	0	0.0.010.0	7.4	11111
E-4	9-24-62	do1	169	0	4.0	138	0	0.000	7.5	1010
F-1	9-24-62	ĺs	237	0	2.0	202	8	0.000	7.4	10000
F-2	9-24-62	dol	137	0	3.0	118	6	010105002	6.9	676730
F-3	9-25-62	dol	147	0	2.0	130	9		7.6	6.000
F-4	9-25-62	lob	174	0	2.0	145	2	$\langle (\hat{a}, \hat{a}, \hat{a}, \hat{a}, \hat{a}, \hat{a}, \hat{a}) \rangle$	7.6	69.93
F-5	9-25-62	sh	145	0	2.0	121	2	111111	7.6	1.1.4
F-6	9-18-62	dol	147	-4	3.0	128	7	10.000	8.4	10.221
F-7	9-18-62	lob	122	0	3.0	109	9	44.44	7.8	
F-8	9-19-62	dol	157	0	5.0	136	7		7.6	
F-10	9-25-62	do1	137	0	13	130	18	21212-012	7.7	1. P. P. P.
F-11	9-25-62	dol	122	0	4.0	100	0		7.8	10.000
F-12	10- 3-62	ps	66	0	5.0	55	1		7.8	0.00
G-1	9-11-62	16	150	0	4.0	136	13	100000000	7.5	4.4.4
G-2	9-19-62	1 s	262	0	6.0	228	13	10.000	7.4	0.000
G-3	9-11-62	1s	176	7	8.0	166	22	14040404040	8.4	22522
G-4	9-19-62	ls	202	0	2.0	189	23	lananananan	7.0	1.24
G-5	9-19-62	dol	189	8	3.0	171	6	42222	8.6	4.4.4
G-6	9-19-62	dol	96	0	4.0	79	0		7.2	
G-8	9-11-62	ls	119	0	6.0	109	11	15.0.111110.	7.9	1.0.0
G-9	9-11-62	ls	211	0	4.0	176	3	10142424(4)	7.9	0404040

28

BASIC DATA

						Hard as C	ness aCO ₃			
Well or	Date of	Water- bearing	Bicar- bonate (HCO3)	Car- bon- ate (CO ₃)	Chloride (Cl)	Cal- cium, mag- ne- sium	Non- car- bon, ate	Specific conduct- ance (micro- mhos at	24	Tem- per- ature
spring	collection	FOCK		Рап	s per milli	011		23 ()	рп	(F)
C 10	0 19 60	del	146	6	4.0	134	14		8 5	1
G-10 G-11	9-14-62	dol	154	0	2.0	129	3	1.1.1.1.1	7.8	
G-12	9-18-62	do1	128	Ō	2.0	118	13		8.2	
G-13	9-18-62	dol	188	0	4.0	161	7	12422	8.1	
G-14	9-18-62	do1	142	0	4.0	120	4	a. a. a. a. a	7.6	61
G-15	9-11-62	do1	126	19	6.0	148	45		8.5	10.0
G-16	9-18-62	sh	140	0	2.0	114	10		7.0	111
H-1 LI 2	9-10-62	dol	137	0	2.0	122	10	11111	8.2	0.05
H-3	9- 6-62	dol	60	õ	4.0	49	0		7.7	
H-4	8-27-62	do1	136	3	2.0	122	5		8.4	61
H-5	9- 6-62	do1	144	0	2.0	124	6	8. 8. 8. 9. 1	8.2	61
H-6	9- 6-62	do1	153	3	5.0	140	9		8.4	11.11
H-7	9-10-62	dol	139	0	3.0	120	6	7.7.7.7.7	8.1	
H-8	9-11-62	sh	10	0	15	260	20	(a) a (a) a	0.8	62
H-9	9-11-02		173	0	29	166	20		8.0	02
H-10	9-10-62	sh	19	0	230	19	4		6.9	
H-12	9-12-62	dol	110	0	2.0	91	1		8.1	
H-13	9-10-62	1s	163	0	6.0	151	17		8.2	
H-14	9-11-62	dol	18	0	50	28	13		7.1	
I-1	9-12-62	do1	122	3	3.0	110	5	a 212 - 12 -	8.4	4.4.4
I-2	9-12-62	dol	88	0	6.0	78	6	$(\mathbf{x},\mathbf{x},\mathbf{x},\mathbf{x},\mathbf{x})$	6.9	
I-3	9-12-62	dol	13	0	2.0	5	0		6.9	+ + +
I-4	9-12-62	dol	31	0	11	10	0	(*,*,*,*,*)*)	7.0	
1-5	9-12-02		130	0	2.0	112	0		8.0	
I-0 I-7	9-12-62	do1	93	Ő	4.0	79	.3		7.8	
K-1	10- 9-62	do1	137	0	4.0	119	7		8.2	4.4.4
K-2	10-10-62	dol	145	8	6.0	132	6		8.7	A. 1. 1
K-3	10-10-62	do1	26	0	6.0	8	0	1.1.1.1.1.1.1	6.9	(*)*)*)
K-4	10-29-62	dol	126	2	7.0	100	0		8.4	
K-5	10-10-62	dol	130	0	7.0	115	8	* * * * *	8.2	
L-1	10- 9-62	dol	217	5	32	118	20	* * * * *	8.5	* (* ; *)
L-2 T 3	10- 9-02	dol	133	5	5.0	114	0		8.5	· 6 (8 · 8)
L-3	10- 8-62	dol	124	13	6.0	122	õ		8.8	
L-5	10- 9-62	do1	147	0	2.0	118	0		8.2	
L-6	10- 9-62	do1	118	12	4.0	99	0		8.8	4.4.4
L-7	10- 8-62	dol	118	6	6.0	99	0		8.5	4.4.4
L-8	10- 8-62	do1	117	7	4.0	101	0	1.	8.5	$(1, \Psi_1, \Psi_2, \Psi_3)$
L-9	10- 9-62	qtz	42	0	5.0	124	0		7.4	
L-10	10-10-02	dol	111	2	2.0	134	2	1.1.1.1.1	8 3	
L-11	10-15-02	dol	124	4	9.0	100	Ô		8.6	62
L-13	10- 8-62	dol	86	0	7.0	120	49	1.000	7.0	
M-1	10- 4-62	dol	78	õ	6.0	62	0		7.8	
M-2	10- 4-62	do1	156	4	3.0	132	0		8.5	
M-3	10- 4-62	dol	162	2	7.0	131	0		8.4	
M-4	10- 4-62	do1	144	3	6.0	121	0		8.5	
M-5	10- 4-62	qtz	6	0	1.0	8	3		7.1	1.4.4
M-6	10- 4-62	dol	120	0	2.0	41	5		7.5 8 E	62
Wie /	10- 4-02	(101	1.00	3	5.0	120	4		0.0	132

Table 3.-Partial chemical analyses of water from wells and springs in Talladega County-Continued

ï

3-

						Hard as C	ness aCO ₃			
				Car		Cal-	Non	Specific		
			Bicar-	bon-		mag-	car-	conduct-		
			bonate	ate	Chloride	ne-	bon-	ance		Tem-
Well	Data of	Water-	(HCO ₃)	(CO ₃)	(C1)	sium	ate	(micro-		per-
spring	collection	rock		Part	s per millid	on		25° C)	ъH	(°F)
									F	
M-9	9-18-62	sh, doi	163	0	3.0	144	10		8.2	16.60
M-12	1- 9-63	sh, dol	232	0	9.2	209	097 1 .15	415	7.5	1.5.5
N-14	10- 3-62	sn dol	38	14	9.0	61	30		8.6	797.00
N-2	10- 3-62	dol	140	ŏ	4.0	124	9	010121202	8.1	1.8
N-3	9-18-62	do1	125	2	3.0	116	10		8.3	1.100
N-4	9-19-62	do1	142	0	4.0	120	4	100000000	7.7	• • (+)
N-6	9-18-62	dol	42	0	2.0	175	102	2.00.253	6 1	61
N-7	10- 3-62	dol	162	Ő	4.0	144	11		8.2	01
N-8	9-19-62	dol	59	0	6 0	129	81	1012/101201	6.7	1.12
N-9	10- 5-62	dol	127	4	3.0	114	3		8.4	62
N-10 N-11	10- 5-62	dol	134	0 7	33	122	12	5353535		63
N-12	10- 3-62	DS	213	ó	3.0	192	0		8.5	62
N-13	10- 3-62	dol	115	õ	3.0	94	ŏ	1010100	8.1	1000
N-14	10- 5-62	dol	131	0	3.0	111	4		8.2	1.1.1
N-15	9-18-62	do1	127	0	4.0	108	4	50+0+0+0+0	7.7	1.000
N-10 N-17	10- 5-02	dol	104	1	3.0	90	3	*****	8.3	5.5.5
0-1	9-25-62	ps	44	0	3.0	28	0	* * * * *	7 1	2,733
Q-1	11- 7-62	ps	35	ŏ	3.0	19	ŏ	**************************************	7.6	222.025
Q-2	11- 7-62	mb	28	0	7.0	52	29	* ******	7.8	1000
Q-3	11- 5-62	dol	142	0	4.0	110	0	818(818)8)	7.7	204040
0-4	11- 7-02	dol	73	0	14	70	10	10000000	7.9	53535
0-7	11- 5-62	ps	115	ŏ	4.0	79	0	101011-001	7.3	23530
R-1	10-15-62	dol	162	0	3.0	132	ŏ	114140218	8 2	2222
R-2	10-15-62	do1	144	9	7.0	132	0		8.4	63
R-3	10-15-62	do1	296	0	8.0	215	0	0.000	8.0	1000
R-4 R-5	10-18-62	ps	29	0	1.0	15	0	1.1(1.107)	7.5	1010
R-6	10-16-62	do1	134	7	4.0	120	0	510005	0.8	1055
R-7	10-18-62	mb	134	46	3.0	130	ŏ	10000	9.4	
R-8	10-16-62	mb	132	0	7.0	105	0		8.2	10.00
R-9	10-16-62	dol	2	0	6.0	18	16	12.22	6.0	10000
S-2	10-10-62	dol	134	0	12	126	7 7 7	210	7.7	10.55
S-3	10-15-62	do1	124	2	5.0	108	6		8.4	
S-4	10-10-62	do1(?)	24	0	3.0	5	Ō	1.0.0	7.3	éliene:
S-5	10-30-62	1s	148	0	.7	132	10.000	230	7.7	5-10 (A)
5-0	10-15-62	dol	129	0	1.9	107		203	7.2	102030
S-8	10-29-62	dol	139	0	1.2	122	0	222	7.4	22/2
S-9	10-25-62	dol	137	Ō	4.8	124	10000	248	7.7	2.2.2
S-10	10-15-62	sh	89	0	4.0	72	0	0.1.1.1.1	8.0	2000
S-11	10-15-62	1s	198	0	6.0	181	19	1414181818	8.0	52626
S-13 S-14	10-15-02	dol	137	0	5.0	121	9	200	8.2	17.23
S-15	11-19-62	sh. dol	119	0	2.1	100	212122	210	73	
S-16	11-26-62	do1	162	õ	13	145	ante entre Gran de la	331	7.6	
S-17	11-19-62	dol	176	0	2.7	144	* * * *	280	7.2	
S-19	10-16-62	sh	180	0	1.1	154	* * * *	282	7.7	1000
T-2	10-29-62	dol	04 18	0	3.0	08 10	207231	140	6.4	
				~			A. A. A. A. A.	50	V · T	

Table 3.-Partial chemical analyses of water from wells and springs in Talladega County-Continued

30
						Hard as C	ness aCO₃			
Well	Dete of	Water-	Bicar- bonate (HCO3)	Car- bon- ate (CO ₃)	Chloride (Cl)	Cal- cium, mag- ne- sium	Non- car- bon- ate	Specific conduct- ance (micro- mhos at		Tem- per-
spring	collection	rock		Part	s per milli	on		25 ⁰ C)	pН	(⁰ F)
- 0	10.05.60		161	0	0.9	100		200	7 7	
T-3	10-25-02	dol	152	0	9.8	143	1.10 (0.17)	261	7.8	(23)3
1-4 T-5	10-29-62	tob	126	0	1.8	108	12.000	211	7.4	a a la compañía de la
т-б	10-29-62	dol	128	0	.0	110	1200	202	7.4	
r -7	10-25-62	do1	122	0	.0	105	100.000	200	7.5	10.0
Ť-8	10-25-62	dol	170	0	6.0	152	40404041	301	7.7	10.0
T -9	11-26-62	do1	296	0	18	290	4.04041940	626	7.6	116.140-4
Ū-1	12-18-62	1s	139	0	2.1	120	10000000	238	7.8	
U-2	12-18-62	do1(?)	173	0	2.3	155		296	7.6	1.1.2
V-2	11-19-62	do1	164	0	1.7	141		272	7.5	4.4%
V-4	10-23-62	dol	58	0	1.0	52	6.000	110	7.0	4.1.1
V-5	10-23-62	dol	125	0	7.0	112	10001040	223	7.6	2010.0
V-6	10-26-62	dol	113	0	.8	95	10005	182	7.5	1. 1. 1
V-7	10-23-62	dol	140	0	1.1	127		233	7.8	4.4.4
V-8	10-20-02	dol	154	0	3.2	120	100000	221	7.7	4-4-4
V-10	10-23-62	dol	153	0	3.1	132	1.11.11.11	449	2.0	10.00
V-11	12-4-02	do1	133	0	10	132	4.0004.00	433	77	(8)8)8
V-12 V-12	12-4-02	dol	133	0	43	115	5.5.5.5	221	75	2524.0
V-13 V-14	11-27-62	dol	146	ő	3.3	122		233	7.8	
V-14 V-15	12_ 4_62	dol	146	ŏ	1.9	121	indus C	236	7.8	1.52
V-15 V-17	11-13-62	do1	154	0	2.8	133	**************************************	258	7.5	10.00
V-18	12-18-62	dol	78	õ	3.8	64	10000000	148	7.5	200
W-1	10-16-62	do1	126	0	.2	110	A1878-81	209	7.4	A. C
w-2	10-16-62	sh(?)	138	0	3.0	115		235	7.6	63
W-3	10-16-62	sh(?)	194	0	.3	148	1.00	279	7.7	
W-4	10-23-62	do1	153	0	1.0	138	212(4)2	257	7.7	1222.003
W-5	10-23-62	dol	119	0	4.9	110	1.0 (1) (1)	236	7.4	(600)
W-6	10-18-62	ps	140	0	. 5	120	00000	226	7.6	240000
W-7	10-18-62	do1	144	0	5.9	134	101004-010	282	7,8	26.4.7
W-8	11-27-62	ps	228	0	2.9	200		360	7.3	
W-9	12- 4-62	ps	17	0	41	39		196	6.2	59
W-10	11-27-62	do1	151	0	7.0	149	***	299	7.0	16.5.14
W-11	12- 4-62	ps	120	0	1.2	110	10.00	205	6.9	10.00
W-12	10-23-62	ps	114	0	1.1	98	10004030	191	7.3	A.4.3
W-13	11-27-62	ps	5	0	6.7	7	tored at	42	5.7	12.55
W-14	1- 4-63	dol	164	0	2.6	138	1.5.8.5	265	7.7	1.7.5
W-15	1- 4-03	lob	180	0	10	171	102(2)(2)	342	7.7	Caller G
W-10	11-27-02	dol	138	0	2.2	122	* * * *	230	7.1	63
W-17 W-19	1-47-02	del	170	0	3.0	150	A. 14214-142	200	7 8	03
W-10 V 1	10-18-62	dol	205	ő	4 2	179	* * * *	337	7 0	2008.0
V-1	11- 5-62	101	145	ő	- 2	114		252	7.6	rata
Y-2	11- 5-62	sc	8	õ	5	7	10000	23	6.3	
Ŷ-3	11- 5-62	sc	208	0	13	194	10.417	421	7.8	1200
BB-19	1- 8-63	dol	147	0	8.3	130		280	7.1	10.00
BB-20	1- 8-63	do1	237	0	14	212	4.05.00.00	420	7.7	
CC-1	12-19-62	1s	130	0	.5	119		218	7.0	
CC-3	12-19-62	1s	146	0	16	155	1-1-1-1-1	308	7.0	7.9.7
CC-4	1- 2-63	ps	126	0	4.5	115	100.0	235	7.3	2404-9
CC-5	1- 3-63	ps	84	0	14	70	10.11	196	7.5	0.000
CC-6	12-18-62	ра	234	0	2.8	211	10.000	384	7.2	630312
CC-7	12-18-62	11.5	163	0	25	224	1.	439	7.0	2020

Table 3.-Partial chemical analyses of water from wells and springs in Talladega County-Continued

5

ų

-4

AVAILABILITY OF GROUND WATER IN TALLADEGA COUNTY

						Hard as C	ness aCO3			
Well or	Date of	Water- bearing	Bicar- bonate (HCO ₃)	Car- bon- ate (CO ₃)	Chloride (Cl)	Cal- cium, mag- ne- sium	Non- car- bon- ate	Specific conduct- ance (micro- mhos at		Tem- per- ature
spring	collection	rock		Parts	s per milli	on		25 ⁰ C)	pН	(⁰ F)
CC-8	12-18-62	7.9	19	0	1.4	10	2011/16/20	53	6.2	hibig
00-0	12-10-62	dol	161	õ	3.0	137	010000	262	7.0	101010
CC-10	1- 2-63	DS	134	ō	3.1	115	10000	221	7.3	3333
CC-12	1- 2-63	1s	234	0	4.4	202		374	7.9	63
CC-14	1- 2-63	do1	564	0	28	510		973	7.3	
DD-1	12-19-62	1s	167	0	4.7	144		282	7.7	0.00
FF-3	1- 2-63	dol	195	0	1.6	168	1. 6. 6. 6.	319	7.9	(a)=(a)
FF-5	1- 2-63	ps	156	0	3.9	125	1.1.1.1	265	7.7	0.000
FF-6	1- 8-63	dol	138	0	2.0	58	0.000	225	7.7	1.14.14
FF-7	1- 8-63	ps	82	0	7.1	75	1.1.1.1	176	7.3	7.7.7
FF-8	1- 8-63	ps	97	0	2.0	87		172	7.3	
FF-9	1- 3-63	do1	146	0	1.9	122		239	7.7	63
FF-10	1- 3-63	1s	196	0	272	310	0.000	1,590	7.5	(a) a (a)
GG-5	1-8-63	dol	152	0	2.9	130		247	7.6	62

Table 3.-Partial chemical analyses of water from wells and springs in Talladega County-Continued

Table 4.-Comprehensive chemical analyses of water from wells and springs in Talladega County

(Analyses by U.S. Geological Survey, Quality of Water Branch)

Well or spring: Numbers correspond with those in plate 2 and tables 3 and 5.

Water-bearing rock: dol, dolomite; ls, limestone; mb, marble; ps, phyllite and slate; qtz, quartzite; sh, shale.

Wei1 or	Date of	Water- bearing	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO3)	Car- bon- ate (CO3)	Sul- fate (SO4)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO3)	Dis- solved solids	Hardn as Ca Cal- cium, mag- ne- sium	ess COj Non- car- bon- ate	Specific conduct- ance (micro- mhos at		Tem- per- ature
spring	collection	rock						Parts	per mill	ion								25°C)	pН	(°F)
		!	h	_													_			
C-1	3-25-63	sh	17	1 1	118	74	46	5.1	453	0	266	33	0.2	0.0	783	598	226	1,210	7.5	
C-13	3-25-63	dol	5.8	.03	33	11	.0	, 3	150	0	.0	2.0	, 1	. 0	143	128	5	246	7.5	
D-3	3-25-63	1s	6.2	.13	24	12	1.4	. 5	123	0	.0	5.6	, 0	4.6	139	108	7	233	7.0	$\mathbf{x}_{i}^{\prime} = \left(\mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \right)$
G-12	3-25-63	dol	5.8	.72	26	9.3	, 9	.1	124	0	, 0	1.4	, 1	, 9	106	103	1	204	7.3	* * * *
L-12	3-25-63	dol	6.9	.02	20	10	, 9	1.3	111	0	,0	2.4	, 1	.б	107	93	2	188	7.0	62
M-5	3-25-63	qtz	5.4	. 89	1_0	1	, 0	. 4	2	0	, 0	1.2	. 0	. 3	10	3	1	15	5.7	4(4)4(4)
V-10	3-25-63	dol	6.9	.04	29	13	1.8	.9	149	0	, 0	4.2	.2	1.0	137	127	5	248	7.5	10.44
V-17	3-25-63	dol	5.8	.03	42	3.7	3.0	. 5	138	0	. 0	6.0	,1	1.6	142	120	7	247	7.1	62
W-1	3-25-63	do1	5.8	11	23	12	, 0	. 4	125	0	, 0	2.4	.1	2.1	123	107	4	214	7.2	63
W-2	3-25-63	sh(?)	9.8	.08	30	15	. 5	, 3	158	0	.0	3.4	.3	1 9	155	135	5	271	7-2	
W-15	3-25-63	do1	5.8	.26	30	20	4.8	,5	177	0	.0	11	. 2	5.4	203	158	13	338	7.3	1140640
AA-1	2-27-56	mb		$= \cdots =$	26	16			151	0	1.8	2.0	.1	. 9		130	7	235	7.7	100.00
AA-3	2-27-56	mb		ē	33	21	0.000	0.212.1	192	0	2.5	4.0	. 1	4.6	- 05000	170	12	308	7.5	1.000 m
AA-4	3-11-57	dol	0.505-5		25	13	2.5	1414.4	143	0	1.2	1 - 5	,0	1.6	1.00000	116	0	220	7.8	64
AA-11	2-28-56	do1	1.1.1	S	30	17	2010/01/2	20000	155	0	4.5	13	.1	7.1	X.904	145	18	297	7.6	63
AA-13	2-28-56	lob	0.000	$\leq 1 \leq r \leq r$	36	19	$\{\psi_i,\psi_j,\psi_j\}\in \{\psi_i\}$	0.00404	189	0	5.0	5 5	1	4.3	-	170	13	315	7.7	63
AA-18	2-28-56	mb		$e_2 + e_1$	54	8.9	0.000	0.00 ± 3	186	0	6.8	7.0	1	7.7	$= - \lambda \left(\lambda_{i}^{2} x_{i} \lambda \right)$	171	19	333	7-6	2332
AA-20	2-28-56	mb		$\otimes \cdot <$	55	8.3	$ \psi_{i}(x) = \psi_{i}(x) = 0$	$(0,0) \in [0,1]$	187	0	7.2	8.5	. 1	5.0	5-1525-SK	171	18	335	7.7	64

BASIC DATA

₹

																Hardr as Ca	асоз			
Well	Date of	Water-	Silica (SiO ₂)	Iron (Fe)	Cai- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bicar- bonate (HCO ₃)	Car- bon- ate (CO ₃)	Sul- fate (SO4)	Chio- ride (Ci)	Fiuo- ride (F)	Ni- trate (NO3)	Dis- solved solids	Cal- cium, mag- ne- sium	Non- car- bon- ate	Specific conduct- ance (micro-		Tem- per-
spring	collection	rock							Part	s per n	nilllon							mhos at 25°C)	pН	(F)
				_	_	_	_	_	_	_	_	_	_	_		_			<u> </u>	
AA-21	2-28-56	dol			28	15	-Sec.		147	0	2.8	3.0	. 1	3.4	27/2/202	130	11	240	7.6	64
AA-22	2-28-56	mb	1100		42	9.5	100000000	1017121	162	0	1.8	4.0	.1	4.9	07597476	144	11	271	7.7	
AA-25	2-27-56	ps	1545452	21000	12	9.5		00000	34	0	1.0	29	.2	31		69	41	211	6.6	63
BB-1	2-27-56	ps	1.1.1.1	SEL GIAV	1.2	2.2	2012/202		12	0	. 5	1.0	.1	.0		12	2	23	6.2	62
BB-3	2-27-56	dol	100.000	44.44	30	12			135	0	10	2.5	. 2	1.5	1003112300	126	14	232	7.6	*****
BB-7	2-27-56	dol			28	11			136	0	. 2	1.5	. 1	. 4		117	4	213	7.7	63
BB-9	2-27-56	ps			25	6.9		*******	118	0	6.8	3.0	. 2	. 1	00000000	91	0	205	6.9	62
BB-17	3-13-57	do1	1.1.1.1.1.1.1	the states	20	9.5	2.5		110	0	. 5	1.5	. 1	1.6	1.1.1.1.1.1	89	0	175	7.3	64
BB-22	2-27-56	do1		0.000	15	19	******		119	0	1.0	6.5	. 2	4.4		116	18	212	7.5	62
BB-24	2-28-56	mb	22.2.4	0.00103	45	8.4	1.25 ± 0.00	1.1000	168	0	2.2	3.0	. 1	3.1	00000033	147	9	275	7.7	64
FF-3	3-25-63	dol	5.1	.06	36	22	.5	. 5	208	0	. 0	4.7	.2	1.1	190	180	9	341	7.4	a w
GG-1	3- 1-57	mb	1.1.1.1	0.000	53	5.8	4 - 6		189	0	4.0	3.5	.0	2.5	2101226282	156	1	301	7.8	61
GG-2	3- 1-57	mb		$(\mathbf{x}_i) \in [0,\infty)$	44	4.4	3.9		152	0	4.5	2.2	- 1	4.9	10101010101	128	4	254	7.7	
GG-7	2-27-56	ps		1.0.1	22	3.2	100000	(5)2(4)3)	68	0	.2	14	. 2	1	15002.5	68	12	146	6.7	61
HH-3	2-28-56	ps	(23(3)));	(0.0000)	3.6	1.5	2000000	10.000	24	0	2.0	2.0	.2	. 1		15	0	44	6.9	62
HH-6	2-27-56	SC	100.000	14(14)212	6.8	2.2			54	0	1.2	2.5	. 2	. 3		26	0	91	6.7	64
HH-7	2-27-56	ps	10100		15	3.3	1000	05.66	78	0	2.0	2-5	. 2	. 1		51	0	128	7.0	
HH-9	2-27-56	ps	12/212/21	10.000	3.6	2.2			30	0	2.5	2.0	. 2	. 5		18	0	59	6.6	10101010

Table 4.-Comprehensive chemical analyses of water from wells and springs in Talladega County-Continued

AVAILABILITY OF GROUND WATER IN TALLADEGA COUNTY

Well or spring: Numbers correspond to those on plate 2; asterisk indicates comprehensive chemical analysis given in table 4.

Type: D, drilled well; Du, dug well; S, spring.

Depth of well and water level: Depths shown in feet are reported; those shown in feet and tenths are measured.

Altitude: Altitudes determined by barometric altimeter.

- Method of lift: F, flow; J, jet pump; M, manual; N, none; P, piston pump; S, submergible pump; T, turbine pump.
- Use of water: D, domestic; Ind, industrial; N, none; P, public supply; S, stock.
- Water-bearing rock: dol, dolomite; ls, limestone; mb, marble; ps, phyllite and slate; qtz, quartzite; sc, schist; sh, shale.

Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land surface (feet)	Above (+) or below land surface (feet) a a	Date of Teasurement	Method of lift	Use of water	Remarks
*C-1	Ronald D. Geier	Carl Pace	D	125	6	sh	535	21.3	8-28-62	J	D	Cased to 60 ft. Yield reported, 5 gpm in 1961. Water is high in iron content.
C-2	Frank Acker	E. L. Graves	D	79	6	sh(?)	536	34	1961	J	D	Cased to 28 ft.
C-3	Charles Jolley	Carl Pace	D	150	6	sh	583	31,6	8-28-62	J	D	Cased to 60 ft. Reported yield, 50 gpm in 1957.
C-4	Billie Reaves	******	D	140	6	dol	674	73.4	8-28-62	J	Ď	Cased to 140 ft. Supplies 2 families.
C-5	George Dempsey		D	125	6	do1	534	20	861	J	D,P	Cased to 123 ft. Supplies 1 family and store.

					TT		face	Wat	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	- • Remarks
C-6	T. R. Brooks	Fairpark Equipment Co.	D	125	6	do1	546	48.9	8-30-62	J	D	Cased to 84 ft. Reported yield, 30 gpm on 8-28-62.
C-7	James F. Adams	Carl Pace	D	210	6	dol	574	80-90	• • • • • • • •	J	D,S	Supplies 1 family and 60 head of stock.
C-8	B. A. Burton	do	D	343	б	dol	553	135.8	8-30-62	S	D,S	Cased to 75 ft. Supplies 1 family, 10,000 chickens, and 100 head of stock. Reported yield, 20 gpm from a pumping level of 225 ft. below land surface.
C-9	Mrs. Cecil H. Burton .	Lawson and Hurst.	D	92	6	do1	511	38.9	8-30-62	J	D	Cased to 40 ft. Cavity at a depth of 92 ft.
C-10	Mrs. J. F. Graves		D	149	6	dol	624	127.9	9-10-62	N	N	Cased to 149 ft.
C-11	do	F. O. Pugh	D	168	6	dol	624	130	1961	J	D	Cased to 168 ft.
C-12	M. L. Johnson	Carl Pace	D	240	6	dol	618	160	1962	S	D,S	Cased to 240 ft. Supplies 2 families, service station, and 5,000 chickens.
*C-13	Town of Lincoln	do	D	260	8	do1	529			Т	Ρ	Known as well 2. Cased to 90 ft. Supplies about 100,000 gpd to 200 services. Reported yield, more than 300 gpm. See driller's log in table 6.

C-14	do	do	D	208	8	dol	502			т	P	Known as well 1. Cased to 100 ft. Supplemental supply. Reported yield, 200 to 300 gpm. Water becomes silty when pumped at more than 50 gpm.
C-15	T. H. McCaig	Alvin Yancey	D	126	6	dol	481	36	7- 6-60	S	D,P	Cased to 36 ft. Supplies 10 families, 2 cafes, and motel. Reported yield, 30 to 50 gpm on 7-6-60.
C-16	John Watson		S			dol	468	••••		F	N	Cited as Blue Eye Spring (Johnston, 1933, pt. 2, table 42, no. 39). Measured flow, 300 gpm on 10-14-28; 550 gpm on 4-2-63.
C-17	Emett Freeman	E. L. Graves	D	195	6	dol	625	140	1961	J	D	
D-1	R. Rhodes	Carl Pace	D	348	6	dol	572	30	1960	J	D	
D-2	J. A. Bullock	Bryan	D	104	6	do1	610	53.0	12-18-56	J	D	Cased to 50 ft.
*D-3	Eastaboga Junior High School.	Carl Pace	D	• • • • • • •	6	1s	570	29.2	9- 6-62	Р	Р	Supplies 250 students and 8 teachers.
D-4	Roy E. Haynes	F. O. Pugh	D	82	6	ls	585	40.2	9-19-62	J	D	Cased to 82 ft., slotted from 50 to 82 ft.
E-1	Rudolph Jackson	Carl Pace	D	135	6	dol	677	56.5	9-24-62	J	D	Cased to 135 ft. Supplies 2 families.
E-2	J. T. Traywick	do	D	235	6	do1	717	75	1954	S	D	Cased to 190 ft. Supplies 2 families. Reported yield, 18 gpm in 1954.
E-3	Ralph Lewis	Fairpark Equipment Co.	D	211	б	do1	691	103.1	9-24-62	J	D	Cased to 180 ft. Supplies 3 families.
E-4	Mark Bannister	Carl Pace	D	200	6	dol	695	71.9	9-24-62	J	D	Supplies 5 families. Bedrock at 150 ft.
F-1	Curtis Hughes	do	D	120	6	1s	598	22.1	9-24-62	J	D,P	Cased to 50 ft. Supplies 1 family and service station. Bedrock at 25 ft.
F-2	O. F. Abbott		D	125	6	dol	614	38.1	9-24-62	J	D	Cased to 125 ft. Supplies 5 families. Reported yield, 25 to 30 gpm in 1952.
F-3	N. R. O'Rear	Carl Pace	D	260	6	do1	656	75	1962	Р	D	

							e					
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land surfa (feet)	Above (+) or below	Date of measurement	Method of lift	Use of water	Remarks
F-4	Sweet Home Elemen- tary School.	Carl Pace	D		6	dol	682			J	P	Supplies 80 students and 3 teachers.
F-5	Jones Tractor Co	do	D	225	6	sh	640	75	9-25-62	J	D,P	Supplies 2 families and tractor sales company.
F-6	Ophelia Hill High School.	do	D		6	dol	651		•••••	S	P	Supplies 560 students and 21 teachers; inadequate during dry season.
F-7	Munford Cooperative .	do	D	275	6	dol	635			Т	P	Known as well 1. Supplies about 17,500 gpd to 150 services. Reported to yield 75 gpm.
F-8	Munford High School.	•••••	D	140	6	dol	624	89.7	9-19-62	s	P	Supplies 806 students and 31 teachers.
F-9	Robert McMillian		D	155	6	do1	635	90	10-18-28	т	N	Cited as Southern Mills Corp. well (Johnston, 1933, pt. 2, table 41, no. 8). Drawdown reported to be negligible after 12 hours pumping 60 gpm.
F-10	Bruce Nowland	Carl Pace	D	94	6	dol	589	43.6	9-25-62	J	D	Supplies 2 families.
F-11 F-12	C. C. Stevens Coleman Goodwin	Fairpark Equipment Co.	D D	48	6 6	dol ps	645 746	106.8 12	9-25-62 162	J J	D P	

G-1	W. H. Wallace		D	135	6	1s	564	53.1	9-11-62	J	D	
G-2	Salem School		D		6	1s	527			J	Р	Supplies 110 students and 4 teachers.
G-3	W. Isbell Sim	Carl Pace	D	85	6	1s	529	• • • • • •	• • • • • • • •	Р	D,S	Supplies 1 family and 35 head of stock.
G-4	Howard H. Green	do	D	68	6	ls	520	10	1960	Р	D,S	Supplies 1 family and 50 head of stock.
G-5	Petro Hester	do	D	80	6	dol	541			J	D	
G-6	Edgar Parker	Alabama-Pennsyl- vania Drilling Co.	D	102	4	dol	600	75	• • • • • • • • •	J	D	
G-7	J. H. Champion	Fairpark Equipment Co.	D	76	6	dol	533	26	•••••	J	D	
G-8	J. W. Beck	Carl Pace	D	107	6	1s	527	15	1959	J	D,S	Cased to 90 ft. Supplies 1 family and 37 head of stock.
G-9	J. H. O'Neal	do	D	80	6	İs	510	20.8	9-11-62	J	D,P	Cased to 19 ft. Supplies 2 families and store.
G-10	H. T. Rowell	do	D	399	6	do1	593	66.2	9-14-62	J	D,P	Supplies 2 families and garage.
G-11	Kermit Strickland		D	150	6	dol	623			J	D	Supplies 3 families. Water becomes muddy after rain.
*G-12	Munford Cooperative.	Carl Pace	D	300	8	do1	656			т	Р	Known as well 2. Supplies about 17,500 gpd to 150 services. Pumped at 75 gpm; potential yield of well is about 300 gpm.
G-13	Esther J. Miller	do	D	165	6	dol			•••••	J	D	Cased to 161 ft. Supplies 1 family and store.
G-14	Walker Collins		S			dol	510			F		Cited as Cedar Spring (Johnston, 1933, pt. 2, table 42, no. 41). Measured flow, 2,500 gpm on 10-18-28; 3,300 gpm on 4-3-63. Water becomes muddy after rain.
G-15	Colonel Woods		D	140	6	dol	542	20.8	9-11-62	J	D	
G-16	Carver School	Carl Pace	D		6	sh	550		•••••	J	Р	Supplies 93 students and 3 teachers. Water is reported to be high in iron content.

							face	Wate	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remark s
H-1	L. J. Hollingsworth	Alabama-Pennsyl- vania Drilling Co.	D	77	6	1s	534			J	D	
H-2	E. T. Merkl	Carl Pace	D	117	6	dol	527	25	• • • • • • • • •	J	D	Cased to 115 ft. Supplies 3 families.
н-3	Mrs. Lula Knox	Lawson and Hurst.	D	162	6	dol	563	95.9	9- 6-62	J	D	
H-4	Estate of James Emery.		S		•••	do1	461			F	N	Cited as Rushing Spring (Johnston, 1933, pt. 2, table 42, no. 40). Measured flow, 3,900 gpm on 10-14-28; 4,800 gpm on 4-2-63.
H-5	Estate of Mae Morgan Houston.	••••••	S			do1	474	••••	•••••	F	D,S	Known as Sam Houston Spring. Measured flow, 1,400 gpm on 4-2-63.
H-6	do		D	92	6	dol	493	27.3	9- 6-62	J	D	
H-7	J. B. Bowden		D		6	do1	633	192.0	9-10-62	s	D,S	Supplies 1 family and stock.
н-8	Will Roszell		Du	45.7	24	sh	546	28.6	9-11-62	М	D	
H-9	Virgil Butterworth	Shaddix Drilling Co.	D	65.7	6	do1	515	25.4	9-11-62	М	D	Cased to 22 ft. Bedrock at 22 ft.
H-10	Joe Wallace	•••••	Du	35.5	24	dol	522	29.6	9-11-62	J	D	
H-11	Betty Cunningham	•••••	Du	46.9	18	sh	547	15.3	9-10-62	J	D	Not cased. Supplies 2 families. Supply was re- ported low in 1954.

H-12	Andy C. Barber	Lawson and Hurst.	D	193	6	dol	614	143	1058	J	D	Cased to 193 ft. Supplies 2 families.
H-13	T. E. Newsome	Charlie Austin	D	108	6	1s	578	36.3	9-10-62	J	D	
H-14	Roy G. Champion	•••••	Du	20.8	30	dol	549	11.8	9-11-62	J	D,S	Not cased. Supplies 1 family and 5 head of stock.
I-1	Purvey Pettus	Carl Pace	D	77	6	dol	485	20	•••••	J	D,S	Cased to 65 ft. Supplies 3 families and 11 head of stock.
I-2	James Kirkland	Lawson and Hurst.	D	95	6	dol	461	46.7	9-12-62	J	D	
I-3	Mrs. Myrtle Ogletree.	Fairpark Equipment Co.	D	99	6	do1	••••	60	1061	J	D	Supplies 3 families.
I-4	T. H. Floyd	do	D	148	6	dol	502	75.5	9-12-62	J	D	
I-5	Т. Н. Кеу	Lawson and Hurst.	D	185	6	dol	569	123.6	9-12-62	J	D,P	Cased to 185 ft. Supplies 2 families and store.
I-6	R. E. Jeter		D	136	4	dol	561	89.8	9-12-62	J	D	Cased to about 136 ft.
I-7	Joe G. Williams	Carl Pace	D	114	6	dol	489	17	956	J	D,P	Cased to 113 ft. Supplies 1 family, store, and service station.
K-1	David H. Challender.	Lawson and Hurst .	D	167	6	dol	537	40	758	J	D	Supplies 3 families.
K-2	Mrs. M. Hubbard	Carl Pace	D	143	6	dol	506	88.2	10-10-62	J	D	Supplies 2 families.
К-3	B. F. Hill	E. L. Graves	D	67	6	do1	488	32.4	10-10-62	J	D,S	Supplies 1 family and 20 head of stock.
K-4	Mrs. Willie M. War- lick.	Lawson and Hurst.	D	165	6	dol	523	102.4	10-29-62	J	D	
K-5	James Haynes	do	D	200	6	dol	556	168.0	10-10-62	J	D,S	Supplies 3 families and 10 to 20 head of stock.
L-1	Mrs. J. S. Armbrester	E. L. Graves	D	100	6	dol	498	61.2	10- 9-62	J	D	Cased to 100 ft.
L-2	Elizabeth Willingham	Fairpark Equipment Co.	D	180	6	dol	582	130.3	10- 9-62	J	D	Cased to 180 ft. Supplies 2 families.
L-3	Willie Howard Jones.	Lawson and Hurst.	D	202	6	dol	635	154.4	10- 8-62	J	D,S	Supplies 1 family and 19 head of stock.
L-4	Timothy Foreman		D	190	6	do1	554	19.0	10- 8-62	J	D	
L-5	Reedie Martin	Lawson and Hurst.	D	148	6	dol	492	45	862	J	D	Cased to 148 ft.
L-6	Antioch School		D	219	6	dol	591	••••	•••••	J	Р	Supplies 80 students and 3 teachers.

I

							face	Wate	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
L-7	Jones View Junior High School.		D	199	6	dol	560			P	Р	Supplies 158 students and 7 teachers.
L-8	Robert E. Armbrester	E. L. Graves	D	80	6	dol	558	53.4	10- 8-62	J	D,S	Supplies 2 families and 2 head of stock.
L-9	L. C. Styres	Fairpark Equipment Co.	D	90	6	qtz	629	38.9	10- 9-62	J	D	Cased to 87 ft.
L-10	Mrs. Anna L. Wesson	E. L. Graves	D	169	6	dol	538	71.7	10-10-62	J	D	
L-11	T. E. Lawson	Lawson and Hurst.	D	100	6	dol	535	93.1	10-15-62	J	D	
*L-12	William Pruitt		s			dol	520	••••		F	D	Supplies 3 families. Measured flow, 800 gpm on 4–2–63.
L-13	William W. Gilbert	Fairpark Equipment Co.	D	159	6	do1	532	21.5	10- 8-62	J	D	Cased to 120 ft. See driller's log in table 6.
M-1	Elbert Reynolds	Austin and Odom	D	128	6	dol	630	78.9	10- 4-62	J	D	Cased to 128 ft. Water is reported to be high in iron content.
M-2	Talladega County Training School.	Carl Pace	D	200	6	do1	580	90		s	Р	Supplies 600 students and 21 teachers.
M-3	do	Lawson and Hurst.	D	180	6	dol	580	101.2	10- 4-62	J	Р	Supplemental supply.
M-4	Hugh Hutto	do	D	100	6	dol	606	61.3	10- 4-62	J	D	Cased to 82 ft. Reported yield, 30 gpm in August 1960.

M-5	R. A. Obert	E. L. Graves	D	225	б	qtz	612	80	759	J	D,P	Cased to 225 ft. Supplies 1 family and cafe. Water is high in iron content. In- stalled water conditioner.
M-6	George Davis	Fairpark Equipment Co.	D	172	6	dol	681	99.4	10- 4-62	J	D	
M-7	Mrs. Fannie Oglesby	Carl Pace	D	95	6	dol	618	30.3	10- 4-62	М	D	Supplies 2 families.
M-8	Newbury Manufac- turing Co.	do	D	257	8	sh, dol	561	26	····i···	т	Ind	Cased to 257 ft. Reported drawdown 20 ft. after 24 hrs. pumping 300 gpm in November 1954.
M-9	City of Talladega	do	D	203	10	sh, dol	553	57	10- 3-55	Т	Ρ	Known as well 1. Cased to 202 ft. Reported drawdown, 27 ft. pumping 1,100 gpm. Supplies part of 2 million gallons per day to 4,394 services. (See well N-15.)
M-10	Alabama Service Co .		D	604	8	sh, dol	549	32	10-19-28	Т	N	Cited as Talladega Ice and Fuel Co. well (Johnston, 1933, pt. 2, table 41, no. 15). Reported drawdown, 45 ft. after 48 hrs. pumping 282 gpm.
M-11	City of Talladega		S	******		ls	533		* * * * * * * * * *	F	N	Cited es City Spring (Johnston, 1933, pt. 2, no. 46). Former city supply. Measured flow, 100 gpm on 10-18-28; 1,100 gpm on 4-3-63.
M-12	Talladega Ice and Storage Co.		D		6	sh, dol	534	19	2-15-57	т	Ind	Reported drawdown, 15 ft. pumping 150 gpm on 2-15-57.
M-13	Wehadkee Yarn Mills, Dye Plant.	Carl Pace	D	237	6	sh, dol	554		******	т	Ind	About 1.5 million gallons per week used to dye yarn in 1962. Reported to yield 250 to 300 gpm.
M-14	Louis Achimon		D		6	sh	594	91.5	10- 8-62	J	D	
N-1	Mrs. Frank H. Powers	Carl Pace	D	55	6	do1	566	26.4	10- 3-62	J	D	Supplies 3 families.
N-2	G. N. Chandler		D	100.2	6	dol	600	57.3	10- 3-62	J	D	Supplies 2 families.
N-3	Alvin Nelson		Du	14.6	30	dol	537	10.2	9-18-62	J	D	Not cased.
	M-5 M-6 M-7 M-8 M-9 M-10 M-11 M-12 M-13 M-14 N-1 N-2 N-3	 M-5 R. A. Obert M-6 George Davis M-7 Mrs. Fannie Oglesby M-8 Newbury Manufacturing Co. M-9 City of Talladega M-10 Alabama Service Co. M-11 City of Talladega M-12 Talladega Ice and Storage Co. M-13 Wehadkee Yarn Mills, Dye Plant. M-14 Louis Achimon N-1 Mrs. Frank H. Powers N-2 G. N. Chandler N-3 Alvin Nelson 	M-5 R. A. Obert E. L. Graves M-6 George Davis Fairpark Equipment Co. M-7 Mrs. Fannie Ogleaby Carl Pace M-8 Newbury Manufac- turing Co. do M-9 City of Talladega do M-10 Alabama Service Co M-11 City of Talladega M-12 Talladega Ice and Storage Co. M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace M-14 Louis Achimon	M-5 R. A. Obert E. L. Graves D M-6 George Davis Fairpark Equipment Co. D M-7 Mrs. Fannie Oglesby Carl Pace D M-8 Newbury Manufac- turing Co. D D M-9 City of Talladega do D M-10 Alabama Service Co. D D M-11 City of Talladega S S M-12 Talladega Ice and Storage Co. D D M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D M-14 Louis Achimon D D N-1 Mrs. Frank H. Powers Carl Pace D N-2 G. N. Chandler D D	M-5 R. A. Obert E. L. Graves D 225 M-6 George Davis Fairpark Equipment Co. D 172 M-7 Mrs. Fannie Ogleaby Carl Pace D 95 M-8 Newbury Manufac- turing Co. D 257 M-9 City of Talladega do D 203 M-10 Alabama Service Co D 604 M-11 City of Talladega S M-12 Talladega Ice and Storage Co. D 237 M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D 237 M-14 Louis Achimon D 237 N-1 Mrs. Frank H. Powers Carl Pace D 55 N-2 G. N. Chandler D 100.2 N-3 Alvin Nelson Du 14.6	M-5 R. A. Obert E. L. Graves D 225 6 M-6 George Davis Fairpark Equipment Co. D 172 6 M-7 Mrs. Fannie Oglesby Carl Pace D 95 6 M-8 Newbury Manufac- turing Co. D 257 8 M-9 City of Talladega do D 203 10 M-10 Alabama Service Co. D 604 8 M-11 City of Talladega S 6 M-12 Talladega Ice and Storage Co. D 604 6 M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D 237 6 M-14 Louis Achimon D 65 6 N-2 G. N. Chandler D 100.2 6 N-3 Alvin Nelson D 100.2 6	M-5 R. A. Obert E. L. Graves D 225 6 qtz M-6 George Davis Fairpark Equipment Co. D 172 6 dol M-7 Mrs. Fannie Ogleaby Carl Pace D 95 6 dol M-8 Newbury Manufac- turing Co. D 257 8 sh, dol M-9 City of Talladega do D 203 10 sh, dol M-10 Alabama Service Co D 604 8 sh, dol M-11 City of Talladega D 604 8 sh, dol M-11 Storage Co. D 6 sh, dol M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D 237 6 sh, dol M-14 Louis Achimon D 6 sh N-1 Mrs. Frank H. Powers Carl Pace D 55 6 dol N-2 G. N. Chandler D 100.2 6 dol	M-5 R. A. Obert E. L. Graves D 225 6 qtz 612 M-6 George Davis Fairpark Equipment Co. D 172 6 dol 681 M-7 Mrs. Fannie Oglesby Carl Pace D 95 6 dol 618 M-8 Newbury Manufac- turing Co. D 257 8 sh, dol 561 M-9 City of Talladega do D 203 10 sh, dol 553 M-10 Alabama Service Co. D 604 8 sh, dol 549 M-11 City of Talladega D 6 sh, dol 534 M-11 City of Talladega D 6 sh, dol 534 M-11 City of Talladega D 6 sh, dol 534 M-12 Talladega Ice and Storage Co. D 237 6 sh, dol 534 M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D 237 6 sh, dol 554	M-5 R. A. Obert E. L. Graves D 225 6 qtz 612 80 M-6 George Davis Fairpark Equipment Co. D 172 6 doi 681 99.4 M-7 Mrs. Fannie Oglesby Carl Pace D 95 6 doi 618 30.3 M-8 Newbury Manufacturing Co. D 257 8 sh, doi 561 26 M-9 City of Talladega do D 203 10 sh, doi 553 57 M-10 Alabama Service Co D 604 8 sh, doi 549 32 M-11 City of Talladega D 604 8 sh, doi 534 19 M-12 Talladega Ice and Dye Plant. D 237 6 sh, doi 554	M-5 R. A. Obert E. L. Graves D 225 6 qtz 612 80 7- -59 M-6 George Davis Fairpark Equipment Co. D 172 6 dol 681 99.4 10- 4-62 M-7 Mrs. Fannie Oglesby M-8 Newbury Manufac- turing Co. D 95 6 dol 618 30.3 10- 4-62 M-9 City of Talladega do D 203 10 sh, dol 553 57 10- 3-55 M-10 Alabama Service Co D 604 8 sh, dol 549 32 10-19-28 M-11 City of Talladega D 604 8 sh, dol 534 19 2-15-57 M-13 Wehadkee Yarn Mills, Dye Plant. Carl Pace D 237 6 sh, dol 554 M-14 Louis Achimon D 6 sh 594 91.5 10- 8-62 N-1 Mrs. Frank H. Powers Carl Pace D 55 6 do	M-5 R. A. Obert E. L. Graves D 225 6 qtz 612 80 7-59 J M-6 George Davis Fairpark Equipment Co. D 172 6 doi 681 99.4 10-4-62 J M-7 Mrs. Fannie Oglesby Carl Pace D 95 6 doi 618 30.3 10-4-62 M M-8 Newbury Manufac- turing Co. Co. D 95 6 doi 618 30.3 10-4-62 M M-8 Newbury Manufac- turing Co. Co. D 95 6 doi 513 26 m. T M-9 City of Talladega do D 203 10 sh, doi 553 57 10-3-55 T M-10 Alabama Service Co do D 604 8 sh, doi 549 32 10-19-28 T M-11 City of Talladega D 66 sh, doi 534 19 2-15-57 T M-13 Wehadkee Yarn Mi	M-5 R. A. Obert E. L. Graves D 225 6 qtz 612 80 7- -59 J D, P M-6 George Davis Fairpark Equipment Co. D 172 6 dol 681 99.4 10- 4-62 J D M-7 Mrs. Fannie Oglesby Carl Pace D 95 6 dol 618 30.3 10- 4-62 M D M-8 Newbury Maunfac- turing Co. D 05 6 dol 618 30.3 10- 4-62 M D M-9 City of Talladega do D 203 10 sh, dol 553 57 10- 3-55 T P M-10 Alabama Service Co D 604 8 sh, dol 549 32 10-19-28 T N M-11 City of Talladega D 6 sh, dol 534 19 2-15-57 T Ind M-11 City of Talladega

Wate	r level			
and surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
		<u> </u>	<u> </u>	
17.5	9-19-62	J	D	
10.4	9-18-62	J	D,P	Supplies 3 families and store.
•••		J	D	Estimated flow, 400 gpm on 9-18-62.
25	1959	J	D	
•••	•••••	J	D,S	Supplies 3 families, dairy, and 115 head of stock.
	• • • • • • • • •	Р	D	
•••		Р	D	Water is reported to be high in iron content.
31.0	11- 7-62	М	D	Terra-cotta casing. Supply inadequate during dry season.
2.2	10- 3-62	J	D	Not cased.
00	1061	J	D	Cased to 137 ft.
15	954	т	D	Supplies 2 families. Water is

ace

							L L	"uit			I I	
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
N-4	Hardy Riddle	Carl Pace	D	86	6	dol	547	17.5	9-19-62	J	D	
N-5	C. M. Robinson	do	D	28	5	dol	542	10.4	9-18-62	J	D,P	Supplies 3 families and stor
N-6	Robert McMellon		S			dol	530	•••••		J	D	Estimated flow, 400 gpm on 9-18-62.
N-7	M. E. Coley	Carl Pace	D	225	6	do1	621	125	1959	J	D	
N-8	Turner Jones		D		6	dol	561		•••••	J	D,S	Supplies 3 families, dairy, and 115 head of stock.
N-9	J. B. White, Jr		D	100	6	dol	608		• • • • • • • •	Ρ	D	
N-10	do		D	160	6	dol	625			P	D	Water is reported to be high in iron content.
N-11	Julian Elliott		Du	33.9	24	dol	587	31.0	11- 7-62	М	D	Terra-cotta casing. Supply inadequate during dry season.
N-12	L. A. Robinson		Du	27.4	42	ps	618	12.2	10- 3-62	J	D	Not cased.
N-13	Howard Lackey	Fairpark Equipment Co.	D	140	6	do1	678	100	1061	J	D	Cased to 137 ft.
N-14	Harry Simmons, Jr	E. L. Graves	D	85	6	dol	605	15	954	J	D	Supplies 2 families. Water is reported to be high in iron content.
N-15	City of Talladega	Carl Pace	D	450	10	do1	686	35	1957	Т	Р	Known as well 2. Casing: 10-in. to 130 ft.; 6-in. from

-

150 to 169 ft. Pumped at 300 gpm. Supplies part of 2 million gallons per day to 4,394 services. Supplemental supply from Talladega Creek. See driller's log in table 6. N-16 Flovd Tavlor -- Ballard 72 6 666 43.2 Cased to 68 ft. D dol 10- 5-62 I D 104 6 708 N-17 Neal Couch...... dodo D DS 24 10--60 I D Supplies 3 families. Reported vield, 15 gpm in 1960. N-18 Ironaton School Carl Pace 189 6 Cased to 189 ft. School D ps 664 NJ closed. 0-1 Coleman Goodwin . . . Fairpark Equipment 60 6 810 D,P Cased to 40 ft. Supplies 1 D рs 30 1- -62 I Co. family and store. 0-1 -- Wade 105 6 Jack Goodwin D 869 D DS. J Q-2 S. A. Galther Du 84.9 36 mb 715 52.5 11- 7-62 ĩ D Not cased. Q-3 Lane Chapel School 104.0 11- 5-62 P D 6 dol 710 Р Supplies 99 students and 4 teachers. Water muddy at times. 0-4 Marion M. Ray 31.1 24 614 13.2 11- 7-62 J Du dol D Terra-cotta casing. O-5 W. R. Roberts Lawson and Hurst. 81 6 695 39.2 11- 5-62 D DS T D Cased to 35 ft. 0-6 D 40.4 6 929 30.9 Buelah Canada 11-5-62 N N Originally drilled to 70 ft. DS 0-7 Marvin Brewer Lawson and Hurst. D 6 927 12.6 11- 5-62 D DS T R-1 D 55 6 27.8 10-15-62 T D T. B. Fergusondo dol 516 R-2 Burk Grogan s dol 490F D Grogan Spring. Measured flow, 1,400 gpm on 4-3-63. R-3 Mitchell Oil Co E. L. Graves D 56 6 dol 515 32.6 10-15-62 J D. Supplies 1 family and service Ind station. R-4 8.1 36 558 D Not cased. Water is re-W. S. Rogers Du DS 4.4 10-18-62 P ported to be high in iron content. R-5 Julian Elliott E. L. Graves 570 Water is reported to be cor-D 85 6 DS 65 1954 Т D rosive and high in iron content. R-6 Mrs. M. A. Allison. do D 32.6 6 533 22.1 10-16-62 T do1 D 235 6 R-7 C. I. Newsome do D mb 665 D R-8 Ernest Hammonds ... M. T. Coleman.... 199 6 mb 627 97.4 10-16-62 J D D

							face	Wate	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
R-9	Mrs. Marion Autrey		Du	34.5	36	dol	604	16.1	10-16-62	J	D	Rock curbing. Supply in- adequate during dry season.
S-1	M. F. Lawson	Lawson Drilling Co.	D	88	6	sh	571	62.2	10-25-62	J	D	Cased to 80 ft.
S-2	Henry T. Searcy	Lawson and Hurst.	D	117	6	dol	526	43.3	10-10-62	J	D	
S-3	Hanner J. Mallory School.	Carl Pace	D	245	6	dol	583	• • • • • •		т	Р	
S-4	Herbert Hurst	Lawson and Hurst.	D	145	6	do1(?)	523	29.1	10-10-62	J	D	Cased to 140 ft.
S-5	Cardwell		D		6	1s	495			J	D	
S-6	Mrs. Harmon		D		6	dol	567	119.8	11-19-62	Р	D	
S-7	James Matson	Lawson and Hurst.	D	214	6	qtz	569	114	1157	J	D	Cased to 214 ft.
S-8	Dude Hubbard		D		6	dol	549	99.7	10-29-62	J	D	
S-9	Belton S. Parks	Carl Pace	D	96	6	dol	507	76	762	J	D	
S-10	S. E. Christie	E. L. Graves	D	135	6	sh	485	39.8	10-15-62	J	D	Supplies 2 families.
S-11	O. B. Hurst	Carl Pace	D	205	6	1s	463	20	862	J	D,S	Supplies 1 family, dairy, and 70 head of stock.
S-12	James M. Moncus		D		6	dol	532	90.3	11-19-62	Р	N	
S-13	P. D. Wood	G. H. Anderson	D	116	6	dol	536	51	958	J	D	
S-14	Howard Arnold	Fairpark Equipment Co.	D	104	6	dol	542	89.2	10-30-62	J	D,S	Supplies 1 family and 7 head of stock.

	S-15	American Talc Co	Lawson and Hurst.	D	404	8	sh, dol	465	•••••		S	Ind	Cased to about 100 ft. Re- ported yield, 232 gpm for 24 hrs. with 158 feet of pump setting in 1958. About 150,000 gpd used as process water. See driller's log in table 6.
	S-16	Rollin Thompson		Du	55.0	24	dol	449	34.7	11-26-62	J	D	
	S-17	Mrs. Sisk		D		4	dol	522	59.1	11-19-62	J	D	
	S-18	Wesley Ponder	E. L. Graves	D		6	do1	539	82.3	10-16-62	N	N	
	S-19	Pine Hill School	Carl Pace	D	100	6	sh	567	••••	•••••	J	P	Supplies 85 students and 3 teachers.
	T-1	Ralph Finn	Fairpark Equipment Co.	D	150	6	dol	537	90		J	D	
	т-2	Jesse L. Smelley	E. L. Graves	D	155	6	dol	504	89.2	10-29-62	J	D,S	Cased to 150 ft. Supplies 1 family and 15 head of stock. Reported yield, 8 gpm.
	т-3	J. W. Hindrick	Fairpark Equipment Co.	D	100	6	dol	481	71.3	10-25-62	J	D	Cased to 27 ft.
	T-4	R. C. Allen	Lawson and Hurst.	D	379	6	dol	457	54	1958	J	D	Cased to 54 ft.
	т-5	Samual Strickland	do	D	166	6	dol	450	28.1	10-29-62	J	D	
	Т-б	Hosea Calhoun	đo	D	150	6	dol	504	94.2	10-29-62	J	D,P S	, Cased to 148 ft. Supplies 1 family, store, and 8 head of stock.
	т-7	Noble Holmes	do	D	160	6	dol	542	125	1958	J	D	
	т-8	W. A. Rowe	Fairpark Equipment Co.	D	74	6	dol	426	16.4	10-25-62	J	D	
	т-9	Coosa River News- print Co.	H. W. Peerson Drill- ing Supply Co.	D	97	6	do1	418	25		т	Ind	Cased to 60 ft. Supplies about 32 gpm for bleaching. Reported drawdown, 42 ft. after 24 hrs. pumping 220 gpm in 1951. See driller's log in table 6.
ļ	т-10	Herman Robinson		D	156	6	dol	454	40	1958	J	D	Cased to about 101 ft. Sup- plies 9 families.
	U-1	Graham Casper		Du	51.6	30	ls	449	41.2	12-18-62	J	D	Cased to 51 ft. Supplies 5 families.
	U-2	Brannon Knight	M. T. Coleman	D	•••••	6	do1(?)	498	78.2	12-18-62	J	D	

							face	Wate	er level			
Well or spring	Owne r	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Aboye (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
V-1	United States Army Ordnance Corps.		D	117.1	8	do1	453	58.1	11-26-62	N	N	Well caved. Formerly sup- plied 25 families.
V-2	B. W. Owens	Fairpark Equipment Co.	D	396	6	dol	486	124.3	11-19-62	S	D	-
V-3	Tallaseehatchee Bap- tist Church.	G. H. Anderson	D	143	6	do1	516	103	1962	N	N	Site for new church.
V-4	Homer Lee Ellison	E. L. Graves	D	127	6	dol	500	83.2	10-23-62	J	D	Supplies 3 families.
V-5	Booker Wesley	do	D	82	6	dol	459	54.1	10-23-62	J	D	Cased to 81 ft.
V-6	Gardner		D		6	dol	437	38.9	11-26-62	Р	D	Supplies 2 families.
V-7	Childersburg Water, Sewage and Gas Board.		S			do1	417			F, P	Ρ	Supply for emergency. Water from creek inundates spring during periods of high flow. Estimated flow, 500 gpm on 10-23-62. Has been pumped at 500,000 gpd.
V-8	Miller W. Lawrence	E. L. Graves	D	96	6	dol	440			S	D	Water also used for irriga- tion of lawn.
V-9	Childersburg Ice Plant.	H. W. Peerson Drill- ing Supply Co.	D	250	6	dol	416		• • • • • • • • •	т	Ind	Water used for cooling. Re- ported former supply for Childersburg.

*V-10	Childersburg Water, Sewage and Gas Board.	Virginia Supply and Well Co.	D	425	12, 10	dol	401	29		т	P	Casing: 12-in. to 52 ft.; 10-in. reliner to 71.3 ft. Re- ported drawdown, 46 ft. after 48 hrs. pumping 450 gpm. Supplies 750,000 gpd to 1,400 services. See driller's log in table 6.
V-11	W. C. Strickland	Ballard	D	41	6	dol	430	13.5	12- 4-62	J	D	Cased to 30 ft. Supplies 3 families. Reported yield, 30 gpm.
V-12	Miss Riley		Du	21.7	36	dol	423	19.0	12- 4-62	М	D	Cased to 21 ft. Supply inade- quate during dry season.
V-13	Mrs. Bessie Ellison.	E. L. Graves	D	70	6	dol	443	• • • • •	•••••	J	D	Reported yield, 30 gpm in September 1960.
V-14	W. Boaz		s	• • • • • • • •	• • •	dol	416			F	•••	Measured flow, 2,200 gpm on 4-2-63.
V-15	James Limbaugh	E. L. Graves	D	110	6	dol	456	57.1	12- 4-62	J	D	Cased to about 105 ft. Cavity at 110 ft.
V-16	Danville Knitting Mills.	do	D	250	6	dol	420	6	1054	N	N	Reported yield, 200 gpm in October 1954. Pumping affects flow from nearby spring.
*V-17	do		S			dol	421	••••		P	P, Ind	Supplies about 30,000 gpd of water for domestic and industrial use. Measured flow, 200 gpm on 4-2-63.
V-18	Curtis James		Du	52.9	30	do1	448	29.6	12-18-62	J	D,S	Cased to 18 ft. Supplies 1 family and 10 head of stock.
*w-1	Joseph J. Chastain		S			do1	508			F, P	D	Cited as Darby Spring (Johnston, 1933, pt. 2, table 42, no. 48). Measured flow, 155 gpm on 10-20-28; 1,200 gpm on 4-3-63.
*W-2	Winterboro School	Carl Pace	D	•••••	6	sh(?)	508	••••		Р	P	Supplies 725 students and 27 teachers.
W -3	do	Fairpark Equipment Co.	D		6	sh(?)	504	15.3	10-16-62	J	D,P	Supplies 2 families and fieldhouse.
₩-4	A. G. McCain	E. L. Graves	D	360	6	dol	515	148.6	10-23-62	J	D	

							urface	Wate	r level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land su (feet)	Above (+) or belov land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
W-5	W. S. Bryant	Carl Pace	D	84	6	dol	486	18.1	10-23-62	J	D, Ind	Supplies 2 families and store.
W-6	M. J. Cleveland		D	100	6	ps	544	20.9	10-18-62	J	D,S	Supplies 1 family and 3 head of stock.
W-7	R. B. Kent	Lawson and Hurst.	D	56	6	do1	521	13.6	10-18-62	J	D,S	Cased to about 22 ft. Sup- plies 2 families, dairy, and 74 cows. Bedrock at 20 ft.
W-8	J. C. Hammond	G. H. Anderson	D	98.7	6	ps	593	74.7	11-27-62	J	D	
W-9	Rosie H. Stamps		Du	23.1	36	ps	464	16.6	12- 4-62	М	D	Not cased.
W-10	Glenn Pruitt	E. L. Graves	D	84	6	dol	472	60.6	11-27-62	J	D,S	Supplies 2 families, 3,000 chickens, and 65 head of stock.
W-11	J. B. Frost	Lawson and Hurst.	D		6	ps	555	63.0	12- 4-62	J	D	
W-12	Austin Pruitt	do	D	140	6	ps	591	73.0	10-23-62	J	D	
W-13	Buster Milam	E. L. Graves	D	70	6	ps	572	45	1-21-57	J	D	Cased to 10 ft.
W-14	Arthur G. Hammonds.	Carl Pace	D	147	б	do1	562	55	1956	J	Ρ	Cased to 146 ft. Supplies about 8,000 gpd to 37 services. Reported draw- down, 2 ft. after pumping 20 gpm in 1949. Cavity at 147 ft.

•												
*W-15	R. E. Williams		D		6	dol	559	••••		J	P	Supplies about 10,000 gpd to 48 services.
W-16	Robert Russa Moton High School.	Carl Pace	D	90	6	dol	545			Р	P	Supplies 420 students and 16 teachers.
W-17	Burkstreaker	·····	s		•••	do1	433		• • • • • • • • •	F	N	Measured flow, 1,600 gpm on 4-2-63.
W-18	Smith		D	• • • • • • •	6	dol	561	••••	•••••	J	P	Supplies about 10,000 gpd to 52 services.
W-19	Avondale Mills	H. W. Peerson Drill- ing Supply Co.	D	208	8	dol	560	••••	•••••	N	N	Test well. Cased to 110 ft. See driller's log in table 6.
w-20	do	do	D		6	dol	547			N	N	Test well.
₩-21	do		D	120	6	dol	549			т	P, Ind	Known as well 1. Partial supply for mill and 190 families in mill village.
W-22	do	H. W. Peerson Drill- ing Supply Co.	D	350	10	dol	538	15	6- 5-46	N	N	Test well. Cased to 31 ft. Reported yield, 8 gpm. See driller's log in table 6.
W-23	do	•••••••	s		•••	dol	507	••••		Р	P, Ind	Partial supply for mill and 190 families in mill village.
, ₩-24	do	Carl Pace	D	180	6	dol	527		•••••	J	P, Ind	Known as well 2. Partial supply for mill and 190 families in mill village.
X-1	R. B. Kent		D	60	6	do l	532	15.8	10-18-62	J	D,S	Supplies 1 family and 47 head of stock.
Y-1	C. J. Horne	Carl Pace	D	120	6	ps	903	2	656	J	D	Supplies 2 families.
Y-2	Olivia Harrell	do	D	480	6	sc	904	4.5	11- 5-62	J	D	Water is reported to be high in iron content.
Y-3	Chandler Springs School.	do	D	115	6	sc	1,026	26.4	11- 5-62	P	Р	Supplies 53 students and 2 teachers. Water is reported to be high in iron content.
*AA-1	Malory Hammonds	E. L. Graves	D	83	6	mb	522	40	5-14-54	J	D,S	Cased to 63 ft.
AA-2	J. D. Beasley	do	D	100	6	dol	515	4	12-23-54	Р	D,S	Cased to 40 ft.
*AA-3	J. B. Sexton	Chadricks	D	152	8	mb	488	6	11- 3-55	J	D	Cased to 8 ft. Reported yield, 1.5 gpm.
*AA-4	W. G. Henderson	Carl Pace	D	130	6	dol	495			J	D	
AA-5	S. D. Butts	Chadricks	D	211	5	dol	507	70	10-31-55	J	D,S	Cased to 60 ft.
AA-6	M. L. Owens	Scott	D	80	6	dol	518			Р	D	Cased to 22 ft.

Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land surface (feet)	Above (+) or below land surface (feet) #	Date of Terrent measurement	Method of lift	Use of water	Remarks
AA-7	Carl Parrish	E. L. Graves	D	50	6	dol	475	24	7- 5-51	J	D	Cased to 32 ft. Reported yield, 25 gpm.
AA-8	J. C. Castleberry	do	D	102.0	6	ps	592	25.6	11-23-56	J	D	Cased to 53 ft. Reported yield, 2.5 gpm.
AA-9	Denson Crow	do	D	71.0	6	dol	578	56.8	9-27-56	J	D	
AA-10	J. A. Finn	M. T. Coleman	D	141.1	б	ps	482	29.8	12-15-55		D	Supplies several families.
*AA-11	Avondale Mills		S			dol	498	•••••	•••••	F, T	P, Ind	Pumped at 350 gpm. Sup- plies part of about 1 mgd for mill and mill village.
AA-12	do		S	• • • • • • • •	•••	dol	500	• • • • •	•••••	F, T	P, Ind	Do.
*AA-13	do		D	560	4	dol	510	10	10-22-28	т	Ind	Cited as Wisconsin Alabama Lumber Co. well (Johnston, 1933, pt. 2, table 41, no. 27). Pumped at 100 gpm.
AA-14	R. C. Moncus	Southern Drilling Co.	D	120	6	dol	525	20	2-25-54	J	D	Cased to 100 ft. Supplies several families. Cavity at 120 ft.
AA-15	Avondale Mills	H. W. Peerson Drill- ing Supply Co.	D	72.7	12	dol	510	1.8	2- 2-54	N	N	
AA-16	J. Hickman		s		• • • •	mb	500	•••••		F	N	Measured flow, 1,000 gpm on 6-25-55.

.

AA-17	City of Sylacauga		S		•••	mb	540	•••••	••••	F	N	Former municipal supply. Flow influenced by pumping in area.	
*A'A-18	Foremost Ice Cream Co.	H. W. Peerson Drill- ing Supply Co.	D	303	10	mb	541	18	1-15-53	Т	Ind	Casing: 10-in. to 50 ft.; 8-in. liner 63 to 105 ft.; 6-in. liner 11½ to 175 ft. Reported drawdown, 6 ft. after 24 hrs. pumping 400 gpm. Supplies 200 to 400 gpm for cooling and clean- ing. See driller's log in table 6.	
AA-19	City of Sylacauga	Joy Manufacturing Co.	D	202.0	6	mb	547	36.0	6- 9-54	N	N	Cased to 68.8 ft. Test well used as observation well. See figure 3.	
*AA-20	Marble City Ice and Coal Co.	Carl Pace	D	187	8	mb	547	••••		Т	Ind	Supplies water for cooling and making ice. Pumped at 200 gpm.	BA
*AA-21	Avondale Mills		S		•••	do1	514	•••••		F, T	D, Ind	Pumped at 350 gpm. Sup- plies a part of about 1 mgd for mill and mill village.	SIC D
*AA-22	City of Sylacauga	H. W. Peerson Drill- ing Supply Co.	D	388	10	mb	558	31.5	2- 5-54	Т	P	Cased to 176 ft.; casing perforated from 116 to 176 ft. Measured drawdown, 100 ft. after 72 hrs. pumping 900 gpm in 1954. Supple- mental supply. Used during periods of prolonged drought. See driller's log in table 6.	АТА
AA-23	do		D	1,360	14	mb	542	22.9	1- 8-53	N	N	Cited as City of Sylacauga well (Johnston, 1933, pt. 2, table 41, no. 27). Pumped at 75 gpm in 1928.	
AA-24	do	•••••	S		•••	mb	540		••••	F	N	Brickyard Spring influenced by pumping in the area. Former municipal supply.	
*AA-25	Henry Morris	E. L. Graves	D	80	8	ps	761	44.4	11-21-56	J	D,S	Cased to 12 ft.	
*BB-1	Pine Grove School	do	D	175	6	ps	515	99.4	11- 1-55	J	Р	Supplies 77 students and 2 teachers.	
BB-2	W. H. Prince,	M. T. Coleman	D	249	6	do1	490	49.0	9-18-56	J	D	Cased to 71 ft. Reported yield, 25 gpm. See driller's log in table 6.	53

							face	Wate	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
*BB-3	W. O. Jones	Carl Pace	D	360	6	dol	500			J	P	Known as well 1. Cased to 70 ft. Supplies trailer park. Reported yield, 5 to 6 gpm.
BB-4	do	do	D	104	6	dol	505	52.9	10-31-55	J	P	Known as well 2. Water is muddy during winter months.
BB-5	Hoyt Strong	E. L. Graves	D	225	6	do1	531	60	11- 2-55	J	P	Cased to 110 ft. Supply for service station. Reported yield, 30 gpm.
BB-6	A. F. Tinney	M. T. Coleman	D	121.1	б	dol		106	3-14-57	• • •	D	Cased to 119 ft. Yields over 10 gpm.
*BB-7	Odena Baptist Church	Carl Pace	D	235	6	dol	498	• • • • •		J	Р	
BB-8	Dickson Davenport	M. T. Coleman	D	255	6	do1	503	77.1	11-30-56	J	D	Cased to 119 ft. Yields 10 gpm.
*BB-9	Calvin Edmonds	E. L. Graves	D	75	6	ps	580	10.0	11- 1-56	F, J	D	Cased to 33 ft. Flows about 9 months during the year.
BB-10	W. S. Ricks	G. H. Anderson	D	75	6	ps	576	35.0	2-28-57	•••	D	Cased to 40 ft. Reported yield, 10 to 30 gpm.
BB-11	William A. Wilson	E. L. Graves	D	150	6	ps	618	110	8-18-52	J	D	Cased to 27 ft. Yields about 2.5 gpm. See driller's log in table 6.
BB-12	Country Kitchen	do	D	68	6	ps	513	12	7-25-51		P	Cased to 60 ft.; perforated 20 to 25 and 45 to 55 ft., with gravel pack. Supply for cafe.

BB-13	John T. Honeycutt .	E. L. Graves	D	75	6	ps	561	25	10- 6-55	J	D	Cased to 28 ft. Reported yield, 30 gpm.
BB-14	Palmer Allen	do	D	90	6	dol	530	21.0	3-11-54	т	Р	Cased to 75 ft. Supplies 13 families.
BB-15	Willie Borden	H. W. Peerson Drill- ing Supply Co.	D	65	6	dol	545	40.9	3-11-54	P	Р	Cased to 33 ft. Supplies 14 families. Reported yield, 30 gpm.
BB-16	Alabama Power Co	Parker	D	150	6	dol	586	••••	•••••	J	D, Ind	Supplies 3 families and electrical substation.
*BB-17	C. E. Davenport	E. L. Graves	D	65	6	dol	575	23	9- 8-54	J	D	Cased to 47 ft.
BB-18	Cedar Creek School	•••••	D	•••••	6	ps	540	••••	•••••	J	Р	Supplies 51 students and 2 teachers.
BB-19	Theodore Payton		D	78	6	do1	464	43.4	1- 8-63	J	D	
BB-20	James R. Stove	M. T. Coleman	D	329	6	dol	• • • • • • •	14	1957	J	D,S	Cased to 12 ft. Supplies 1 family and 6 head of stock. Reported yield, 3 gpm.
BB-21	New Hope Church	do	D	203	6	dol	575	49.5	7-16-56	s	Р	
*BB-22	Mrs. F. H. Powe	E. L. Graves	D	134	6	dol	582	21	4- 2-55	J	D,S	Cased to 77 ft.
BB-23	Moretti-Harrah Marble Co.		D	90.0	6	mb	580	60	10-22-28	N	N	Cited as Madras Marble Co. well (Johnston, 1933, pt. 2, table 41, no. 26). Cased to 18 ft. Original depth, 187 ft. Reported yield, 80 gpm.
*BB-24	4 do	H. W. Peerson Drill- ing Supply Co.	D	238	12	mb	573	47.7	755	Т	Ind	Cased to 90 ft. Measured drawdown, 12 ft. after 3 months pumping 700 gpm in 1955. Cavity from 211 to 237 ft. About 75,000 gpd used from well; an additional 225,000 gpd used from quarry springs.
CC-1	V. W. Heard	E. L. Graves	D	58	6	1s	436	55		J	D	Cased to 58 ft.
CC-2	do		D	200	6	1s	415	60	1962	J	D	
CC-3	Claude J. Wilson		D	46	6	1s	430	37.7	12-19-62	J	D	Supplies 2 families.
CC-4	J. D. Coleman	Fairpark Equipment Co.	D	94	6	ps	462	• • • • •	•••••	J	D	
CC-5	Clyde Etress		Du	20.7	30	ps	506	6.4	1- 3-63	J	D	Water is reported to be high in iron content.

								face	Wat	er level			
	Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
	CC-6	J. K. Taylor	E. L. Graves	D	186	6	ps	470	25	10- 1-62	J	D	Cased to 65 ft. See driller's log in table 6.
1	CC-7	Otis Butler	do	D	70	6	ps	506	22.4	12-18-62	J	D	Cased to 48 ft. Reported yield, 25 gpm.
1	CC-8	Dan Butler	do	D	120	6	ps	503	25	• • • • • • • • •	J	D,S	Supplies 2 families and 56 head of stock.
	CC-9	E. L. Brown	do	D	265	6	dol	450	72.7	12-19-62	J	D	Supplies 2 families.
	CC-10	C. V. Goodwin		D		8	ps	452	19.1	1- 2-63	J	D	Do.
1	CC-11	Wallace Pope	•••••	Du	14.1	30	ps	488	10.1	1- 3-63	N	N	Water is slightly muddy at all times and low during dry season.
1	CC-12	C. V. Goodwin		Du	25.1	30	ls	420	20.9	1- 2-63	N	D	Lined with rock. Reported to have been dry in 1954.
	CC-13	H. F. Robinson	G. H. Anderson	D	152	6	1s	416	10	1962	J	D	
	CC-14	Wallace Pope	Bryant	D	97	6	do1	423	10	1961	J	D	
1	CC-15	W. B. Caudle	do	D	95	6	dol	422	15	• • • • • • • • •	J	D	Cased to 11 ft. Supplies 2 families.
	DD-1	Avondale Mills		S			ls	407			F, P	D,P	Supplies recreational area and caretaker's house. Es- timated flow, 50 gpm on 12-19-62.

FF-1	W. D. Graham		S			do1	431	•••••		F, P	D	Supplies 3 families. Meas- ured flow, 500 gpm on 4-2-63.
FF-2	Louisville and Nash- ville Railroad.		D	69.8	6	dol	440	20.5	1- 3-63	N	N	
*FF-3	Fayetteville High School.	•••••	D	300	6	døl	424	• • • • •		Р	D, P	Supplies 1 family, 189 students, and 13 teachers.
FF-4	Morris Jackson	M. T. Coleman	D	145	6	ps	446	10.9	1- 3-63	J	D	Cased to 22 ft. Reported yield, 2 gpm in October 1962.
FF-5	Talladega Springs Elementary School.	•••••	D	•••••	6	ps	490	48.8	1- 2-63	J	Р	Supplies 43 students and 2 teachers.
FF-6	A. D. Waites	•••••	S			do1	479			F	•••	Flow from spring is impound- ed. Measured flow, 290 gpm on 4-2-63.
FF-7	do	M. T. Coleman	D	128	6	ps	490	14.3	1- 8-63	J	D	Water enters well at 40 ft.
FF-8	A. A. Morris	Thompson-Wyman Marble Co.	D	102	4	ps	515	37	1960	J	D	Cased to 65 ft. Cored to explore marble. Reported drawdown, 5 ft. pumping 3 gpm in 1960.
FF-9	John M. Hightower	•••••	S	• • • • • • • •		dol	457	••••	• • • • • • • • • •	F	D	Estimated flow, 300 gpm on 1-3-63.
FF-10	D. V. Gooch		S			ls	416			F	N	Cited as Talladega Spring (Johnston, 1933, pt. 2, table 42, no. 53). Water has sulfurous odor. Former health resort. Estimated flow, 0.5 gpm on 1-3-63.
*GG-1	Alabama Marble Co		s	•••••		mb	595			Ρ	P	Cited as Gantts Spring (Johnston, 1933, pt. 2, table 42, no. 54). Estimated yield, 200 gpm. Supplies about 80,000 gpd for 95 ser- vices.
*GG-2	do		s			mb	565			Р	Р	Supplemental supply.
GG-3	Pitts	E. L. Graves	D	150	6	do1	615	• • • • •		J	D	
GG-4	S. V. Robertson	do	D	150	6	ps	61,5			J	D	
GG-5	Hamilton		s			dol	447	• • • • •	• • • • • • • •	F	D,S	Measured flow, 1,200 gpm on 4-2-63.

							face	Wat	er level			
Well or spring	Owner	Driller	Type	Depth of well (feet)	Diameter of well (inches)	Water-bearing unit	Altitude of land sur (feet)	Above (+) or below land surface (feet)	Date of measurement	Method of lift	Use of water	Remarks
GG-6	C. M. Pate	E. L. Graves	D	118	5	ps	689	32.8	11-23-56	J	D	Cased to 31 ft. Reported yield, 3 gpm. Bedrock at 15 ft.
*GG-7	Lake Tate Co- operative.	Carl Pace	D	200	6	ps	798	20	•••••	Т	P	Cased to 160 ft.
GG-8	Thomas B. Caine	E. L. Graves	D	103	5	ps	824	36.0	6-27-56	J	D	Cased to 58 ft. Reported yield, 15 gpm.
HH-1	Glenn Elkins	do	D	100	6	ps	. 626	25	6-20-53	J	D	Cased to 31 ft. Reported yield, 1.5 gpm.
HH-2	W. G. Rumsey	do	D	82	6	ps	624	34.1	11-23-56	J	D	Cased to 78 ft.
*HH-3	E. L. Graves	do	D	74	6	ps	781	27	11-15-55	J	D	Cased to 59 ft. Reported yield, 2 gpm.
HH-4	Goodman	M. T. Coleman	D	136	6	ps	842			N	N	Cased to 22 ft. Dry hole.
нн-5	Richard Scroggins	E. L. Graves	D	140	6	ps	664	50	6-18-48	J	Р	Cased to 74 ft. See driller's log in table 6.
*HH-6	W. E. Miller	do	D	92.0	6	sc	795	27.0	9- 2-54	J	N	Cased to 57 ft.
*HH-7	Howard Cherry	do	D	130	6	ps	896	37.6	11-21-56	J	D,S	Cased to 71 ft.
НН-8	Charles Jennings	M. T. Coleman	D	82	6	ps	761			J	D	
*HH-9	M. T. Coleman	E. L. Graves	D	180	б	ps	776	8.0	7-16-56	J	D	Cased to 93 ft. See driller's log in table 6.

Table 6.-Drillers' logs of wells in Talladega County

	Thickness (feet)	Depth (feet)
Well C-13		
Owner: Town of Lincoln		
Driller: Carl Pace		
Red clay	30	30
Yellow clay	62	92
Lime rock	б	98
Broken layers of lime rock and water-bearing chert	157	255
Light clay opening	5	260

Well L-13

Owner: William W. Gilbert Driller: Fairpark Equipment Co.

Shale and clay		80	80
Chert and mud		35	115
Limestone, sof	t	44	159

Well N-15

Owner: City of Talladega Driller: Carl Pace

Red clay	75	75
Yellow clay	53	128
Lime rock	32	160
Lime rock opening	4	164
Solid lime rock	76	240
Lime rock opening	6	246
Solid lime rock	114	360
Lime rock opening	3	363
Solid lime rock	87	450

Well S-15

Owner: American Talc Co. Driller: Lawson and Hurst

Shale, red	50	50
Slate, hard	40	90
Limestone with mud-filled cavity at bottom	314	404

60 AVAILABILITY OF GROUND WATER IN TALLADEGA COUNTY

Table 6.-Drillers' logs of wells in Talladega County-Continued

	Thickness (feet)	Depth (feet)
Well T-9		
Owner: Coosa River Newsprint Co. Driller: H. W. Peerson Drilling Supply Co.		

Clay	35	35
Mud and boulders	4	39
Lime rock, hard and solid	46	85
Chert, broken	12	97

Well V-10

Owner: Childersburg Water, Sewage and Gas Board Driller: Virginia Supply and Well Co.

Clay, sand, and broken rock	52	52
Soft rock	18	70
Blue limestone with streaks varying in hardness (water		
encountered in soft streaks)	224	294
Gray limestone	131	425

Well W-19

Owner: Avondale Mills Driller: H. W. Peerson Drilling Supply Co.

Sticky gumbo clay	60	60
Streaks of rock and mud	45	105
Chert	2	107
Limestone	101	208

Well W-22

Owner: Avondale Mills Driller: H. W. Peerson Drilling Supply Co.

Clay	20	20
Boulders	11	31
Solid rock	2	2
Lime and marble flint	2	350

Table 6.-Drillers' logs of wells in Talladega County-Continued

Thickness Depth
(feet) (feet)

Well AA-18

Owner: Foremost Ice Cream Co. Driller: H. W. Peerson Drilling Supply Co.

Soil	40	40
Marble	44	84
Cavity	20	104
Shaly material	31	135
Marble, shaly	40	175
Marble becoming harder	128	303

Well AA-22

Owner: City of Sylacauga Driller: H. W. Peerson Drilling Supply Co.

25	25
50	75
56	131
5	136
9	145
15	160
16	176
14	190
31	221
69	290
42	332
56	388
	25 50 56 9 15 16 14 31 69 42 56

Well BB-2

Owner: W. H. Prince Driller: M. T. Coleman

Soil and mud, brown, and gravel layer at bottom	71
Limestone (assumed) 19	90
Limestone 4	94
Limestone, bluish-gray, hard	146
Limestone, bluish-gray, hard (darker than above)	152
Schist, light-brown, soft	159
Limestone, gray	165
Limestone with sandy schist 6	171

62 AVAILABILITY OF GROUND WATER IN TALLADEGA COUNTY

Table 6.-Drillers' logs of wells in Talladega County-Continued

	TICCU	(feet)
Well BB-2-Continued		
Limestone, gray, softer	10	181
Schist, bluish-gray	6	187
Cavity	1/2	187½
Limestone, dark-blue	5½	193
Limestone, grav	9	202
Limestone and schist	6	208
Limestone grav	23	231
Limestone and schist, water at 247 ft	18	249

Well BB-11

Owner: William A. Wilson Driller: E. L. Graves

25	25
40	65
10	75
15	90
1	91
59	150
	25 40 10 15 1 59

Well CC-6

Owner: J. K. Taylor Driller: E. L. Graves

Soil	17	17
Rock	37	54
Mud	6	60
Rock	126	186

Well HH-5

Owner: Richard Scroggins Driller: E. L. Graves

Soil, rock, gravel	37	37
Rock	7	44
Rock, hard	5	49
Rock, soft, and soft places	23	72
Slate, hard, and blue granite	23	95
Rock, softer and lighter	25	120
Rock, softer	7	127

Table 6.-Drillers' logs of wells in Talladega County-Continued

	Thickness (feet)	Depth (feet)
Well HH-5-Continued		
Rock, hard	5	132
Rock, softer	8	140
Water: 20 to 30 gph from 74 to 95 ft.		
50 gph from 95 to 100 ft.		

Well HH-9

Owner: M. T. Coleman Driller: E. L. Graves

Clay, sandy, soft, with hard places	85	85
Slate, blue, and sand rock	31	116
Slate, blue, soft	14	130
No record	50	180

• • . ·

GEOLOGICAL SURVEY OF ALABAMA

BULLETIN 81 PLATE 1

GEOLOGICAL SURVEY OF ALABAMA

BULLETIN 81 PLATE 2

